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ABSTRACT 

This thesis attempts to develop a framework to affect such a coupling of scales by 

―learning‖ from selected computational experiments at the meso-scale and transmitting 

the ―learned‖ behavior to the macro-scale. The ―learning‖ is performed by means of an 

artificial neural network that is trained using data extracted from the meso-scale direct 

numerical simulations. In particular, this thesis describes the use of an Artificial Neural 

Network (hereafter abbreviated to ANN), to learn and predict the transient forces on a 

particle in a compressible flow field to produce an accurate model for shocked 

particulate-laden flows. In the multi-scale sense, the ANN learns meso-scale information 

of particle-fluid interactions requiring expensive computations; once the behavior is 

learnt, the ANN can be interrogated to obtain information by a macro-scale model to 

accurately produce results without continuing to perform expensive computations in 

direct numerical simulations. Particle data is collected from a compressible Eulerian-

Lagrangian solver and provided to the ANN for a range of control parameters, such as 

Mach number, particle radii, particle-fluid density ratio, position, and volume fraction. 

Beginning with a simple single stationary particle case and progressing to moving 

particle laden clouds, the ANN is able to evolve and reproduce correlations between the 

control parameters and particle dynamics. The trained ANN is then used in computing the 

macro-scale flow behavior in a model of shocked dusty gas advection. The model 

predicts particle motion and other macro-scale phenomena in agreement with 

experimental observations and with a very large reduction in time and computational 

expense. 
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CHAPTER I:    

INTRODUCTION 

Background 

In phenomena involving high-speed flows in multiphase materials, such as in dust 

explosions, condensation shocks, explosive debris transport, detonation in heterogenous 

media and a host of other phenomena, there are complex interactions that occur between 

propagating shocks and rarefaction waves, including carrier fluid-particle interactions and 

particle-particle interactions.
(1)(2)

 Such flows are very difficult to visualize (due to the 

wide range of length scales and short time scales involved) and experimental 

measurements are difficult and expensive to obtain.
(3)

 Therefore, to understand what 

happens in such violent environments requires the development of accurate 

computational models.   

Computational speeds in fluid calculation have increased tremendously over the 

past few decades, along with advances in modeling and calculating complex multi-phase 

flows. 
(4)

 However, accurate modeling of complex multimaterial flows still presents stiff 

challenges due to at least the following reasons: 

1. The full description of compressible multimaterial flows requires models to 

embed the interactions between the fluid and particles, and between particles 

themselves 
(5)

. Such models are empirical in nature. As mentioned above 

experimental investigation of shocked particle laden flow are rather 

challenging and the information derived from such experiment cover limited 

parameter ranges.  
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2. Even where experimental data for such flows are available, the manner in 

which the behavior of a mixture in described in a continuum setting can lead 

to loss of important physics.
(6)

 

3. Resolution of transient shocked flows in itself demands rather heavy 

computational resources. Since the length scales of the discrete particles in a 

multi-material system and the time scales of response of the particulate phases 

may be vastly different from that of the bulk flow, resolving the dynamics of 

the individual components of the mixture is impossible. Therefore some 

overall (averaged or homogenized) behavior of the multi-material mixture 

needs to be modeled and computed.
(7)

 While such averaged material 

representations may be sufficient for many engineering applications, there are 

some physical problems where the local behavior of the material, i.e. the 

detailed interactions between the (unresolved) individual phases in the 

mixture can become important and can influence the observed global 

dynamics. Examples of such sub-grid phenomena that can manifest at large 

scales and completely dominate the overall material behavior include: a) 

material failure/fracture/spall in ductile materials, where cracks can develop at 

grain boundaries and progress along specific defects in the material leading to 

the change of the overall (i.e. large scale) material response;
(8)

 b) deflagration 

to detonation transition in a heterogeneous explosive, where detonation 

initiation is thought to occur at voids in the material or due to inter-granular 

interactions upon passage of a compression wave in the material;
(9)

 or c) 
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particle-particle interactions and particle-carrier medium interactions in dusty 

gas flow leading to changes in the observed macroscopic behavior.
(10)

 

An example in the last category is shown in Figure 1 and Figure 2.
(1)

  The 

experiments from which the figure is obtained were performed by Boiko et al.
(1)

 Here a 

cloud of particles (polystyrene, average particle diameter 𝑑𝑝  of 80 microns) is hit by a 

shock wave (traveling from left to right) in a shock tube.  The shock wave was initiated 

by a driver chamber while particles were thrown up into the chamber by an 

electromagnetic propelling device. The images and tracking data was obtained from a 

fast-acting laser visualization method known as multiframe shadow visualization.
(1)

 The 

overall behavior of the particles subjected to the shock is very interesting; in particular, 

for the high particle volume fraction case the particle distribution assumes a triangular 

form as shown in Figure 2. The reason for formation of the triangular structure in the case 

of the heavily loaded mixture case (while the low particle loading does not produce a 

distinct structure) must hinge upon the interactions between the more densely packed 

particles. In order to reproduce the observed macro-scale distribution of the particles, the 

effects of the micro-scale interactions between the particles must be placed in a macro-

scale description of the shocked particle-laden fluid.  
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Figure 1: Experimental Image,  

(Low 𝜑𝑝  - Boiko et al)
(1)

 

Figure 2: Experimental Image,  

(High 𝜑𝑝  - Boiko et al)
(1)
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The particle motions in a macro-scale particle-fluid mixture model traditionally 

follow from Newton‘s laws applied to the individual particles and reflect the force 

transmitted to the individual particles by the impinging shock.
(11)

 This force will depend 

on the shock strength (Mach number, M), the density of the particle relative to the fluid 

(
𝜌𝑝

𝜌𝑓
), the volume fraction of the solid (𝜑𝑝) and the particle size (𝑑𝑝). The key question is: 

how does one determine the dependency of the force on a given particle on each of these 

parameters?  

The idea pursued in this thesis is that one can perform direct numerical 

simulations on small clusters of particles subject to a range of conditions in the parameter 

space defined above (consisting of M, 
𝜌𝑝

𝜌𝑓
, 𝜑𝑝 , 𝑑𝑝) to learn about the behavior of 

―representative particles‖. For example, one can compute the drag versus time curves for 

particles based on such simulations as a function of the above four parameters.
(12)

 Then 

one can encapsulate the dependence of the drag on time (t) as well as on the parameters 

in the form: 𝐷(𝑡) = 𝑓(𝑀,
𝜌𝑝

𝜌𝑓
, 𝜑𝑝 , 𝑑𝑝 , 𝑡), which is conventionally the route taken in 

establishing experimental correlations or drag laws.  However, since the drag law to be 

derived is dependent in a rather complex way on multiple parameters, the resulting 

manifold in the parameter space that describes the drag law can be quite difficult to 

obtain.  In this regard, the idea of employing a device to ―learn‖ this law from a series of 

computational experiments becomes attractive. After all, organic systems, exemplified by 

human beings, learn rather complex patterns and assimilate them with ease; this is 

accomplished by utilizing the rather complex neural architectures residing in the human 

brain. The general concept of utilizing neural architectures to learn behaviors that can be 
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transmitted to other systems opens the possibility of using ANNs for multiscale 

modeling.  In the following we briefly review the concept of multiscale modeling (MSM) 

and various approaches used in such models. The current approach draws some central 

ideas from such methods but follows the route of ANN-based learning, which has been 

applied only in a few instances of multiscale modeling thus far. 
(13)
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CHAPTER II:    

MULTISCALE MODELING APPROACHES 

As stated in Chapter I, the specific goal of this project is to develop a method 

utilizing an ANN to efficiently model shocked particle-laden flows. The configuration of 

interest is similar to Figure 1 and Figure 2, taken from Boiko et al., 
(1)

 where a cloud of 

particles is placed in a domain and a shock wake is allowed to pass through the cloud. To 

simulate the behavior of the particle-laden flows, in particular to capture the particle 

distribution that is observed in the experiments, it is necessary to adequately represent 

particle-shock and particle-particle interactions in a macro-scale model.
(14)

 Thus, a 

connection between micro-scale dynamics and macro-scale dynamics must be 

established. In the past, empirical or semi-empirical correlations were obtained to connect 

the micro-scale dynamics to macro-scale parameters and the macro-scale model then 

employed these correlations;
(15)(16)

 examples include drag laws for the particles, heat 

transfer correlations (capturing effects of unresolved features such as boundary layers), 

turbulent viscosity coefficients etc. Developing such correlations requires painstaking 

experimentation to cover parameter spaces; these experiments can be difficult and 

expensive, and sometimes, for phenomena occurring at small spatial or temporal time 

scales, even impossible to perform.
(17)

 In recent times, the idea of multiscale modeling 

has emerged, spurred by the availability of large-scale computing platforms and 

improved numerical techniques.
(18)

 In multiscale modeling, detailed computations are 

performed separately at the microscale and the information obtained from such 

simulations is ―somehow‖ transferred to the macro-scale and conversely.
(19)

 The key 
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operating word here is ―somehow‖; the methods for affecting such interscale transfer are 

still being developed.  Some candidate techniques are mentioned below. 

Importance of and challenges to multiscale modeling 

All phenomena in natural and engineered systems are intrinsically multi-scale. 

However, in describing these phenomena at the level of detail relevant to engineered 

systems, continuum scale dynamic laws are employed.
(20)

 Assumptions are made 

regarding the effects of small spatial and short time scales (hereafter collectively called 

“fine” scales) on the observed large-scale (hereafter called “coarse” scale) dynamics. 

Familiar examples are the encapsulation of molecular interaction effects through 

thermodynamic equilibrium assumptions into macroscopic material properties, such as 

viscosity, thermal conductivity, surface tension etc. In traditional continuum mechanics, 

empirical models (typically called ―closure‖ models) such as Newtonian fluids, 

Coulombic friction, Linear or nonlinear elastic material, etc. are common and highly 

successful in describing and predicting the coarse-scale behavior of the material.
(21)

 

However, there exist a substantial number of phenomena where, semi-empirical ―closure‖ 

models are quite inaccurate or even entirely incorrect in their predictions.
(21)

 Typically, in 

such problems, the fine scales have a disproportionate impact on the coarse scale flows, 

and therefore demand to be treated in sufficient detail. A classical example of this 

situation is the effect of boundary layers in flows with small viscosity. Prior to the advent 

of boundary layer theory classical inviscid hydrodynamic theory produced totally 

incorrect predictions of flows around solid obstacles, as exemplified by the d‘Alembert 

paradox 
(22)

.  These difficulties were removed and the theory of flight was placed on solid 

ground when the boundary layer concept removed the vortex sheet singularity at a solid 
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surface by developing a detailed model of the small scale flow behavior within the 

boundary layer 
(23)

.  

Fortunately, in the case of viscous flows, two distinct scales (the body length 

scale and the viscous length scale) are present, and it is possible to treat these scales 

separately and to match solutions between the two scales.
(24)

 Examples of other problems 

(in many cases with singularities resting at the fine scale) where such scale separation 

exists include crack propagation phenomena in solids, microstructure growth in solidified 

materials, three-phase contact line motion in multiphase flow, instabilities leading to 

formation of fine scale structures, such as droplets in spray atomization, flows through 

porous media etc.
(16)(25) (26)

 On the other end of the spectrum are multiscale phenomena 

where a separation of scales is not possible and a full description of the mechanics 

demands treatment of the phenomena at each scale and the interaction between scales. 

The archetype is fluid turbulence 
(27)

. Since the contribution of a continuum of scales is to 

be accounted for (i.e. turbulent spectra are intrinsically broad band), the modeling of fluid 

turbulence remains intractable for the foreseeable future.
(28)

 Modelers will continue to 

rely on ―closure‖ models for the description of fluid turbulence, at least for some range of 

spatio-temporal scales. 
(29) 

From the standpoint of tractability with regard to multi-scale modeling, it is 

becoming increasingly feasible to tackle phenomena where a distinct separation of scales 

exists and where the physical characteristics and transport at these distinct scales can be 

adequately described and computed.
(30)

 This has become possible, in part due to the rapid 

development of computer simulation techniques and hardware, particularly associated 

with large scale computing on multiprocessor systems.  Examples of systems that have 
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seen robust activity in multiscale modeling include flows in porous media 
(31)(32)

 , 

multiphase flows 
(33)(34)(30)(35)

, and flows in biological systems 
(36)(37)

.  In these cases, the 

development of computational techniques and hardware has been assisted by the tandem 

development of advanced visualization techniques that have enabled quantitative 

characterization of the geometry of the smaller scales. Since the fine scales can be 

visualized and efficient methods to compute flows at the fine scale are available, direct 

numerical simulations can be performed at these scales.   The challenge, then, is to 

extract information from the simulations at the fine scales (called “restriction” 
(38)

) that 

are important to correctly describe the effects of the fine scale on the coarse scale 

dynamics. Various approaches have been developed in the literature for performing the 

restriction operation as will be described in the review of methods below. The equations 

at the coarse scale are computed based on the information provided by the fine scales. 

The sequence of computation then returns to the small scales which are then evolved 

again, with initial and boundary conditions supplied from the large scale (through a 

procedure called “lifting” 
(38)

). Multi-scale computation of this type can proceed in a 

―concurrent‖ 
(18)

 manner (where fine and coarse scales are computed in an alternating 

sequence with full coupling) or in a ―hierarchical‖ manner (where fine scale 

computations are performed separately with varying parameters and the results are 

encapsulated in a model for later use in a stand-alone coarse scale computation).  While 

hierarchical modeling of multi-scale phenomena has great value and is perhaps the only 

practical recourse for many physical phenomena, concurrent computation has gained 

increasing attention, particularly with the wide availability of multiprocessor computing 

environments.  This proposal seeks to proceed along the path of concurrent multiscale 
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modeling using novel approaches for computation of the governing equations as well as 

for communicating between the different scales. 

Approaches to multiscale modeling 

Modeling codes in computational fluid dynamics, or CFD, are limited in speed 

mainly by the number of cells used in calculations.
(39)

 To maintain accuracy, cell sizes 

must be kept small. However the need for CFD models with increasing domain sizes is 

on the rise. With the small grid sizes and increasing overall domain sizes, cell numbers 

approach hundreds of millions of grid cells; far more than a single computer processor 

can handle. Thus a new breed of CFD models has risen up with the idea of multiscale 

modeling.
(13)(17)(40)

 A significant issue   in multiscale modeling is the passage of 

information from the smaller meso-scales to the larger macro-scales. This process of 

multi-scale information exchange has given rise to different methods. One of the most 

promising methods is the patch dynamics method; where only ―patches‖ of fine scale 

calculations are made then information is passed to the larger scale; the small scale to 

large scale passage is called lifting.
(19)

 The main issue of lifting is deciding what to pass 

and how to use the information. This problem becomes even more important to 

multiscale modeling when multiple phases, such as rigid particles immersed in a fluid, 

are introduced.
(1)(41)

  

Homogenization/ Up-scaling 

The traditional approach to dealing with multiscale phenomena has taken the 

route that falls under the umbrella of ―homogenization/mixture formulations/up-scaling‖ 

(42)(43)
. In such approaches the fine scale details are transmitted to the coarse scale (at 

which the simulations are conducted) via empirical/semi-empirical/analytical correlations 
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reflecting effective mixture properties (conductivities, diffusivities, equations of state, 

drag, interphase flux terms etc.).
(44)

 Homogenization-based approaches require specific 

properties of the small scale behavior, such as scale separation and periodicity.
(45)

 While 

this treatment suffices for some problems, it suffers from a lack of generality. In addition, 

the homogenized model (typically embedded into the coarse scale via transfer functions 

or interphase interaction terms as sources in the governing equations) can often be 

problem specific or valid over restricted parameter spaces, restricting the range of 

applicability of the homogenized model. In any case, with this approach, typical of 

hierarchical multiscale models, the fine scale effects are not fully coupled to the coarse 

scale dynamics, leading primarily to a one-way coupled model, i.e. the fine scales affect 

the coarse scale but not vice-versa. Such ―coarse-graining‖ of fine-scale models and the 

coupling of coarse-grained models to fine-scale models at specific boundaries separating 

the two sub-domains is quite popular in multiscale models coupling molecular and 

continuum dynamics computations
(46)(47)(48)

  and in biomedical applications coupling 

lower-dimensional models to more detailed higher-dimensional models
(36)(37)(26)

.  In 

recent years, attention has turned to effecting two-way coupling between the fine and 

coarse scales, within and without the homogenization paradigm.
(49)

 The methods 

adumbrated below provide a route to the type of modeling that is on the horizon, namely 

full treatment of physics and computation at each of the relevant scales that play 

important roles in the overall dynamics of the system.  In each case the way in which the 

fine-scale dynamics is coupled to the coarse-scale is italicized for emphasis. 
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Embedding fine-scale features into global discretization 

In the context of modeling flow through porous media, Hou and coworkers
 (15)

 

(31)(50)
 and others 

(51)
 have developed a multiscale finite element procedure where the 

(fixed) fine scale variations are embedded into the coarse scale calculations by 

incorporating the fine-scale variations into the finite element basis functions.  Thus, the 

fine scale features are implicitly included in the solution of the coarse scale equations 

through the global stiffness matrix.  In order to include global effects (such as channel 

formation) in addition to fine-scale heterogeneity, into the porous medium model an 

adaptive multiscale model has also been proposed 
(51)

. 

 

Wavelet-based multi-resolution analysis 

Another approach to multiscale modeling in the porous medium literature is that 

performed Sahimi and coworkers 
(52)(44)(53)

. Their approach consists of using the intrinsic 

multiresolution feature of wavelet transforms to direct computational resources to those 

regions that require fine-scale resolution, while retaining coarse-scale representations 

where sufficient. This allows for efficient computation and transient adaptivity so that 

fine-scale features are captured to desired fidelity while interacting fully with coarse-

scale computation. The natural multiscale basis functions embedded in wavelet 

representations and the data compression enabled in the wavelet domain is also exploited 

in discretizations with wavelet basis functions 
(54)

.   
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Equation-free modeling 

A novel ―equation-free‖ multiscale approach has been developed by Kevrekedis 

and coworkers 
(46)(55)

. The method relies on “short bursts” of fine scale direct numerical 

simulations (typically using molecular dynamics) to determine the time evolution of 

coarse-scale quantities. Since the short burst ―numerical experiments‖ are used to evolve 

the coarse-scale quantities directly, no transfer functions or up-scaling of the fine-scale 

information is necessary and therefore the fine- to coarse-scale communication becomes 

equation-free. The coarse field is then time-stepped with a large (coarse) time step and 

the coarse field is “lifted” (i.e. interpolated on to the fine mesh) to provide the initial and 

boundary conditions for the fine-scale computation.  The efficiency of the multi-scale 

methodology adopted in the equation-free framework comes from three sources: 1) The 

coarse-scale time step is much larger than the fine-scale time step (―gap-tooth‖-ing 
(56)

 ), 

2) Fine-scale calculations are performed for short bursts, and 3) The fine-scale 

calculations are performed in discrete and non-contiguous spatial locations with grid 

sizes much smaller than the coarse grid size. This last strategy is called ―patch dynamics‖ 

(19) (57)(58)
 (see Figure 3 for illustration of the concept of patches). The spatially separated 

patches receive initial and boundary conditions through ―restriction‖ from the coarse 

scale.  Engquist and coworkers 
(38) 

have extended this approach to other applications in 

the form of a ―heterogeneous multiscale method‖.   In terms of generality the 

heterogeneous multiscale method holds promise as an approach that can be employed for 

solving problems involving transient phenomena such as interfaces embedded in the 

coarse as well as fine-scale fields.  
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Heterogeneous multiscale modeling 

Based on the ideas set forth in the equation-free multiscale modeling strategy of 

Kevrekedis and coworkers, Engquist and others 
(38)(48)(59)

 propose a general and efficient 

methodology called Heterogeneous Multiscale Method (HMM). In this method, the basic  

ideas of using patch dynamics, gap-toothing, lifting and restriction are employed to solve 

continuum equations at the coarse-scale by extracting fine-scale effects from “short 

burst”, spatially sampled solutions at the fine scale.  Note that the whole notion of fine-

scale computations to inform coarse-scale dynamics would be untenable if the 

efficiencies arising from temporal sampling (gap-toothing) as well as spatial sampling 

(patch dynamics) were not exploited. That is, the fine-scale solution is only obtained at a 

few spatial locations and for a short period of time. Example problems where HMM has 

been used that has direct bearing on the problem of interest to this thesis are the 

following: 

1. Flame front propagation 
(59)

: In this problem the HMM approach is used to 

solve the coarse scale equations by advancing the micro-scale (which cannot 

be resolved by the coarse grid) combustion front using explicit interface 

tracking and direct numerical simulation of the front dynamics at the fine-

scale.  This is a Type A multiscale problem
(38)(17)

, where the microscale 

solution provides boundary conditions for the macro-scale problem, i.e. the  

microscale effects are strong in a localized region, in the present case at the 

singularity represented by the flame front. 

2. Crack propagation 
(60)

: At the coarse scale the linear elasticity equations are 

solved along with an update of the crack tip position, while at the fine scale 
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the molecular dynamics solution in the vicinity of the crack tip is employed. 

This removes the singularity corresponding to the crack tip from the macro-

scale (coarse) field. This is a Type A problem as well; fine scale effects are 

disproportionately critical in the vicinity of the crack tip. 

3. Dynamics of complex fluids 
(48)

:  At the coarse scales the standard Navier-

stokes equations are solved; molecular dynamics is used at the fine scale to 

inform the coarse-scale constitutive laws where necessary. This includes 

regions that exhibit singularities at the coarse-scale, such as at moving contact 

lines, stress singularities at sharp corners etc. These represent Type A 

multiscale problems. In addition,  the effect of complex molecular structure of 

fluids are included by considering macromolecules, modeled in the fine scale 

as dumbbell shaped particles with appropriate potentials in the MD 

calculations.  The multiscale coupling then is used to inject the fluid stresses 

into the coarse-scale equations.  This is a Type B multiscale problem 
(17)

, 

where the micro-scale problem provides constitutive relationships for the 

macro-scale field. 

The problem of interest to this project is a Type B problem in the sense that we 

seek to obtain coarse-scale information on the constitutive properties and behavior of 

materials with subgrid texture and dynamics. The primary difference between the 

application of HMM to the Type B problem (# 3 above) and the problem to be addressed 

in the present proposal is that while in 
(48)

 the fine-scale model is an MD model, in the 

present case the fine-scale model is a continuum model. In this sense the situation of 

interest to this work is akin to the subgrid modeling of flows in porous media 
(15)

.     
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Application of Artificial Neural Networks to multiscale modeling 

There have been significant advancements in the area of digital cognitive 

enhancements and artificial intelligence.
(61)

 One particular application of artificial 

intelligence which closely parallels what we are seeking in this thesis is that of pattern 

recognition or knowledge assimilation for use in fluid dynamics.
(62)(63)

 Essentially, we 

want to gather knowledge regarding how a particle in a cluster reacts to a shock that hits 

the cluster. We want to ―learn‖ this behavior from computational experiments and then 

transmit this behavior to another simulation performed at a coarser scale. With this 

purpose in mind, a possible candidate approach for knowledge acquisition is an artificial 

neural network, or ANN, which is capable of learning a myriad of different behaviors. 

ANNs are capable of learning the complicated behavior of several variables by modifying 

a collection of weights attached to its ―neurons‖.
(64)

 In effect, the learning process is 

designed to mimic small parts of the human brain where learning takes place by 

modulating the strength of synaptic connections between individual neurons. In the 

human brain this process is incredibly fast, as the human brain is capable of processing 

the computational equivalent of over 10 petaflops.
(65)

 The assimilation and recovery of 

knowledge from ANNs is not quite as spectacular.  But the essential idea remains the 

same.  The tedium in ANN applications (unlike in the human brain) comes from the need 

to train the ANN by providing it with sufficient samples of training data, so that the ANN 

can adequately construct (in its ―mind‘s eye‖, so to speak) the hyper-surface (due to the 

multidimensional parameter space) representing the behavior of the system. The number 

of samples required to train the ANN depends on the complexity of the behavior to be 

represented and also depends on the complexity of the ANN itself.
(66)

 Therefore, while 
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the ANN provides learning and knowledge assimilation ability akin to a microcosm of 

the human brain, its use must be accompanied with sufficient care from the user in order 

to properly train the ANN in the desired parameter space.  Once the ANN is trained 

however, knowledge recovery is rather rapid, and can be effected by interrogating the 

ANN. Utilizing the ability of the ANN to capture and represent complex behavior in a 

multidimensional parameter space in a CFD code would greatly improve the speed of 

calculations while still maintaining accuracy. The jump in speed would be obtained by 

the ANN‘s ability not only to learn and process information, but also because of its 

prediction capabilities.   The work in this thesis will seek to demonstrate these concepts 

by applying it to solve the problem of shock-impacted particle laden flows as pictured in 

Figure 1 and Figure 2 of Chapter 1.
(1)

 

Macro-scale modeling and interscale coupling 

At the macro-scale, information about what happens at the meso-scale is still 

needed. The largest problem in macro-scale modeling is to obtain meso-scale information 

in an efficient manner. The main idea utilized in our modeling is patch dynamics.
(19)

 In 

patch dynamics, the idea is to only run direct numerical simulations (DNS) for fine scale 

or meso-scale models selected from the coarse scale or macro-scale model. A diagram of 

this concept is displayed in Figure 3. 
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Figure 3: Patch Dynamics Concept 

 

At the meso-scale, mixtures are considered to be suspended particles which 

require DNS, while at the macro-scale mixture may be assumed as homogeneous with 

characteristics obtained from the meso-scale. This way the effects of the meso-scale may 

be accounted for and the flow characteristics lifted from the smaller scale will be utilized 

without high computational expenses. In the case of flow through a porous media for 

instance, a detailed calculation at the meso-scale can provide the flow impedance of a 

small patch (i.e. RVE – representative volume element).
(67)

 For shock-impacted particle 

laden flows the concern at the macro-scale is to predict the particle trajectory. In our case, 

the macro-scale modeling is only concerned with the evolution of particle motion. The 

particles at the macro-scale are advected in Lagrangian fashion and are treated as point 

particles. Provided with a particle‘s mass, initial position and the force experienced by 

the particle, a Lagrangian model to track particle trajectory can be obtained. The meso-

scale simulations then are charged with providing the force on the particle as a function 
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of several control parameters, as mentioned previously. Using the concept of ANN based 

learning, the way in which meso-scale direct numerical simulations can be used to 

develop quantitative information on the forces on the particle, will be described in the 

following chapters. 
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CHAPTER III:    

METHODOLOGY 

The basic methodology behind behavior learning for shock-impacted particle 

laden flows is to develop some type of learning algorithm; in this case an ANN. Then it is 

shown that the ANN can properly learn from selected data sets (called ―training sets‖), 

and predict values for points in the parameter space (called the ―testing set‖) that were 

not provided in the training set. Note that ANNs perform well when used for 

interpolation, but poorly for extrapolation. Therefore the testing set typically must lie 

within the convex hull of the training set. In this chapter we briefly introduce the main 

principles of ANNs and the process of training and testing the ANN. 

Artificial Neural Networks 

ANNs are composed of a myriad of simple elements called neurons. The neuron 

by itself is a very simple device. In both a biological neuron and in an artificial neural 

network, each neuron has inputs coming into it; each neuron performs some process with 

the inputs, and then sends an output to other neurons. A single neuron is responsible for 

only one function and a representation of an artificial neuron can be seen in Figure 4. 
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Figure 4: Artificial Neuron 

 

The output for the single neuron illustrated above is described in by, 

 𝑂𝑛 =  𝜑 𝑏𝑘 +  𝑤𝑘𝑖 ∗ 𝑥𝑖
𝑚
𝑖=1  

 

Equation 1 

where On is the output, φ is the activation function, bk is the threshold bias, wk are the 

synaptic weights, xi are the inputs from the previous layer of neurons, and i is the number 

of inputs. Every neuron has many connections going to and from other neurons. The 

information passed on to each neuron may have a very small or large effect on the final 

output. A threshold limit is used via a bias value in artificial neural networks to simulate 

the formation and degradation of inter-neuron connections as in the biological system. 

Large arrays of these neurons supply the ability to map out regions of parameter space 

defined by the input parameters. Each neuron is capable of editing weights supplied to it 

based upon the accuracy of the entire network. This enables the neural network to learn 

the behavior of data provided.  

 There are many different weighting schemes and update procedures. For the one 

utilized here, a complete interlayer network is used.
(66)

 This connects each neuron of one 

layer to each neuron of the next layer. Every neuron in the network uses the same basis 
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function to calculate its output. For the artificial neural network used in this work, the 

basis function is a sigmoid function. A sigmoid function is an S shaped curve. It can be a 

smooth logarithmic based curve or piecewise threshold type, as shown in Figure 5.  

 

 

Figure 5: ANN Activation Functions 

 

The activation function selected for our neural network is the function tanh(x). It 

is a fairly simple function whose derivative is always positive, making it a popular 

choice. Several ANNs use other basis functions, including simple step functions, periodic 

basis function such as sine and cosine, radial basis functions
(68)

 such as Gaussian 

distributions, and even wavelets; the idea of using wavelets as a basis function 
(69)

 and to 

assist in learning was experimented as a tangent topic. A simple diagram of how the 

summation property to formulate a new hyper-surface by an ANN is shown in Figure 6. 

In this example, a network of two linear inputs, a bias threshold, four hidden layer 

neurons and an output neuron exists. This ANN is feed forward
(68)

 because the direction 

of information travel is only forward. Using the inputs from the previous layer, each of 

the neurons in the hidden layer is formulating a simple decision scheme. For one neuron, 

the low values of the first input are useless and the high values are important while the 
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second input is disregarded by not having a value above the bias threshold. For that 

hidden neuron, its own hyper plane would appear with one low end and one high end 

with a gentle sigmoid slope separating the two regions. This hyper plane developed will 

never be seen by the user and thus the data and the neuron interacting with it is ―hidden‖. 

The other three neurons behave in the same way treating one region as being more or less 

important as well as one input. However, when the four neurons are all summed together 

by the final output neuron, they create a hyper plane that shows a shared region of 

importance. A simple application of this network could be the amount or red and blue as 

inputs of a color mix and the final area would be purple. A more complicated example as 

Ahmadi et al. performed, include inputs of porosity and water saturation to predict 

permeability of porous media.
(70)

 

 

Figure 6: ANN Hyper-surface Development 
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Topography 

The neural network used is a single hidden layer, feed-forward, back-propagation 

network. It possesses one hidden layer of neurons set between the input layer and output 

layer. The ANN is capable of expanding the number of hidden neurons based upon the 

complexity of the function the neural network is fitting. The input layer includes one bias 

neuron to facilitate different levels of activation for each hidden neuron. All of the input 

data was fed forward through the network in one direction without any neurons 

competing against each other; this is why the ANN is called a feed forward network. The 

last layer consists of outputs where a final prediction can be used to find an error in the 

prediction and adapt the weights to the previous layers allowing the ANN to learn. The 

basic network topography is show in Figure 7. 

 

Figure 7: ANN Topography 

Learning and Prediction 

 Once the ANN has been developed, it must go through two important phases 

before it will be capable of producing useful predictions. The first phase is the training 
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phase where a set of data is provided and the ANN learns from the data. The algorithm 

used to learn and edit the weights for each neuron is called a back-propagation algorithm. 

Every neuron in the network contains the same basis function for processing data. For 

most cases, there is only one output neuron that sums all its inputs to arrive at a final 

prediction. A back-propagation algorithm 
(71)

 takes the predicted values and compares it 

to the expected values (i.e. to the target output for the given inputs in the training set). 

Depending on the error between the two, the weights for each neuron is edited.
(68)

 The 

testing of the neural network is performed by making a random selection from the data 

set (until all the data are run through) and each data point is tested and used to train the 

neural network once per cycle. When the ANN is in training, it should be learning from 

every point in a data set otherwise learning will be biased. Every iteration step for an 

ANN consists of cycling through the total number of data points in a data set. The error 

produced on every iteration step can be plotted to show a convergence curve on how the 

ANN is being trained. One such convergence curve for the training of ANN is shown in 

Figure 8. Note that as the iterations increase the learning of the ANN saturates and 

convergence is declared at a pre-specified error tolerance or maximum iteration count. 
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Figure 8: ANN Convergence 

 

When the training phase is complete, an artificial neural network can be tested by 

querying with a testing set of input data. The resulting output from the ANN is compared 

against the desired output corresponding to the input parameters for that testing set. The 

ANN is believed to have successfully learned if the error produced for the testing set is 

below a desired tolerance. Querying an ANN at multiple points inside a domain allows us 

to obtain a final plot of what the ANN predicts.  The performance of the ANN as a 

function approximation device is illustrated with some examples below.  

Examples of ANN learning process 

Logic gates 

To illustrate the basic ideas of training and testing of an ANN, some simple 

examples of function learning are presented in the following. In the first example, 

the ANN is tested on logic gates by feeding in the inputs and target data. The 
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ANN then is trained and tested for accuracy. To train the ANN the input data is 

set as the value of the ordinate and the target output is the corresponding output 

value. Once the ANN has been trained, it is tested, i.e. the ANN is queried for 

values of the ordinate (as input data) of which, for most applications, the ANN 

was not trained. The resulting output of the ANN is the predicted data. In the case 

of training with logic gates, the ANN had 10 hidden neurons and was trained 

through 500 iterations. The inputs and output were Boolean variables while the 

ANN was allowed to use any real value; this allowed the ANN to use the sigmoid 

activation function and enables us to show a curved convergence path (as opposed 

to piecewise). The convergence for each logic gate is displayed in Figure 9. For 

the cases of AND, OR, and NOR, the areas of delimitation were linearly 

separable. In a 2 by 2 array of Boolean variables, the area of positive values for 

linearly separable region can be closed off with one line. This occurs for any 

function with a derivative with constant sign. For the XOR logic gate, the inputs 

are no longer linearly separable and therefore local minima or local maxima may 

occur. This requires a network of logic gates to define, and for an ANN the 

convergence curve is slow at first before it discovers this fact. This ability to 

handle apt to several regions of maxima and minima is what sets an ANN apart 

from an interpolation scheme. 
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Figure 9: ANN convergence for logic gates 

 

Table 1: Logic gates 

 

AND 1 (true) 0 (false)  NOR 1 (true) 0 (false) 

1 (true) 1 (true) 0 (false)  1 (true) 0 (false) 0 (false) 

0 (false) 0 (false) 0 (false)  0 (false) 0 (false) 1 (true) 

       

OR 1 0 (false)  XNOR 1 (true) 0 (false) 

1 (true) 1 (true) 1 (true)  1 (true) 0 (false) 1 (true) 

0 (false) 1 (true) 0 (false)  0 (false) 1 (true) 0 (false) 
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The single-variable sine function 

In the next example, the ANN was provided discrete data corresponding to the 

functional form of a sine wave, shown in Figure 10.  This single-variable function 

introduces the idea of multiple values for data input and correlation to the output. 

The ANN had 20 hidden neurons and was trained for 1000 iterations. The 

comparison for the training set data (red dashed line) and final prediction (blue 

solid line) can be seen in Figure 10.  As seen from the figure, the ANN predicts 

the sine wave in good agreement with the actual sine function.  It is important to 

note that the only difficulty that the ANN exhibits is at the maxima and minima of 

the curve where the predictions are not as accurate. The accuracy of the 

predictions can be improved by employing a greater number of neurons or using 

more sophisticated training methods. 
(72)

 

 

Figure 10: ANN Sine Wave Comparison 
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Multi-variable case (―Peaks‖) 

Next, we examine the performance of the ANN for a multi-variable function; a 

two-dimensional input space is considered, and the predicted manifold is then a 

surface. For multiple inputs the ANN is provided with each input in the form of 

an array and the prediction is plotted on a hyper-surface. The test case here is a 

MatLab standard test called ―peaks‖. This test case presents a fairly complex 

manifold to be learnt by the ANN, with multiple maxima and minima in the 

parameter space and fairly steep gradients. To insure accuracy the ANN learning 

was iterated 10000 times. The error of the ANN decreased dramatically in the 

beginning and then slowed down. There were small points in learning where the 

ANN had slight increases in error. These small jumps allowed for the learning of 

data regions that are not linearly separable. The 2-D surface known in MatLab as 

―peaks‖ is shown in Figure 11 with convergence - (a), ANN prediction - (b), 

training input – (c), and actual value (d). The powerful feature of the ANN is that 

increase in dimensionality of the parameter space can be carried out indefinitely 

(i.e. the hyperspace to be constructed can be of arbitrary dimensions), assuming 

the ANN is capable of adapting fast enough to what it needs to learn. 

Furthermore, once the ANN is trained for all available training data sets, if further 

data sets become available the ANN can be further trained by introducing these 

additional training data; therefore, refinements of the prediction capability of the 

ANN in selected areas of the parameter space can be carried out as necessary. 

These features lend versatility to the ANN and make it an attractive function 

approximator in comparison to standard regression techniques.  
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Figure 11: ANN learning of "Peaks" 

 

Learning a drag law 

When a planar shock wave hits a stationary spherical particle and passes over it, 

the drag force on the particle (i.e. force exerted on the particle) changes 

throughout shock passage. Once such drag versus time curve obtained by Tanno 

(73)
 in an experimental (shock tube) setup is displayed in Figure 12. 
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Figure 12: Transient Drag Curve
(73)

 

 

Empirical drag laws 

Empirical drag laws do not provide the transient drag experienced by the particle 

as the shock passes over it. Instead, some measure of steady drag is available that 

omits the details of the shock passage. With trained ANNs, however, one can 

retain the information on the drag versus time for a wide range of parameter 

space. Thus, information obtained from experiments or computations need not be 

discarded; it can be learned and retained as ―knowledge‖ by the ANN.  This does 

not imply that a large data set is stored. Once the ANN is trained the information 

on the drag versus time behavior is stored in the weights attached to the individual 

neurons in the ANN; the individual data sets used for training can then be 

discarded.  

When attempting to accurately track the position of a particle, the forces, 

acceleration, and velocity changes over time. Almost no previous models of shock-

impacted particle laden flows contain explicit transient drag force across a particle. Drag 
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force laws with anything other than Reynolds Number as the dependent variable are few 

and far between. The ANN-based learning technique offers the possibility of retaining 

this information based on detailed experiments or numerical simulation around individual 

particles. Then, for developing such drag laws, the input space is spanned by the 

parameters characterizing the flow as well as the time of shock passage, so that the 

transient drag behavior can be learnt by the ANN and retained in the form: 𝐷(𝑡) =

𝑓(𝑀,
𝜌𝑝

𝜌𝑓
, 𝜑𝑝 , 𝑑, 𝑡). 

―Lifting‖ information from meso-scale calculations 

The driving force behind particle motion in shock impacted particle laden flows is 

the drag force produced on the particle. Once a shock wave has passed over a particle, the 

subsequent trajectory of the particle can be determined from Newton‘s law if the impulse 

provided to the particle by the shock is known. To model a particle‘s trajectory at the 

macro-scale, information must be ―lifted‖ from the meso-scale. To limit the amount of 

information passage between scales, only the most pertinent data is passed. A particle‘s 

position, trajectory and velocity are dependent only on the initial location, mass and force 

applied. Since the force is transient in nature, its characteristics must be quantified. When 

viewing a shocked particle drag curve (Figure 12), it is evident that there is a peak point 

encountered and the drag force decays over a certain interval of time. These two values 

are maximum drag coefficient, 𝐶𝑑𝑚𝑎𝑥
and relaxation time, τr. Once the drag versus time 

curve is established and the 𝐶𝑑𝑚𝑎𝑥
 and τr is known, the total impulse, It , can be computed 

as the area under the curve. For a standard drag curve (obtained from experiment or 

simulation), we can set τr to be represented by exponential decay and thus the impulse 

would be: 
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 𝐼𝑡 =  𝐶𝑑𝑚𝑎𝑥
∗ 𝑒

−𝑡
𝜏𝑟 𝑡𝑓

𝑡𝑜
 Equation 2 

where It is the impulse, to is the impact time, tf is the final time, 𝐶𝑑𝑚𝑎𝑥
 is the maximum 

drag force, t is time, and τr is the relaxation time. It turns out that in macro-scale 

calculations, the quantity of interest is the It. In addition, since the application of It acts 

over a time characterized by τr, once these two values are known, the momentum change 

of a particle hit by a shock can be calculated. These two pieces of information are all that 

is needed to quantify a particle‘s trajectory in a macro-scale calculation. Thus, the ANN 

can be trained to learn these two quantities as functions of the input parameters.  

Macro-scale calculations 

Since the main idea behind using an ANN-based learning scheme was to create an 

―equation-free‖ lifting scheme,
(40)(46)(55)

 macro-scale calculations can employ the 

information obtained from the ANN in effecting Lagrangian particle motion. Given the 

Mach number, 
𝜌𝑝

𝜌𝑓
, and 𝑑𝑝 , an ANN can predict 𝐶𝑑𝑚𝑎𝑥

 and τr. These values can then be 

placed in a Lagrangian algorithm using Newton‘s second law and the particle trajectory 

calculated.  

The above represents the main idea pursued in this thesis. The ANN is used to 

―lift‖ information from detailed meso-scale calculations (or perhaps even from 

experiments if they are available). The macro-scale calculations access the lifted 

information by simply querying the ANN (a procedure that rapidly provides information 

to the macro-scale on fairly complicated behavior of the particles as the meso-scale). The 

macro-scale calculations are then advanced further and information is accessed from the 

ANN at each step of the macro-calculation. This type of interaction between the micro- 
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and macro-scale, affected by trained ANNs represents a first step in developing a true 

multiscale simulation capability, in which it may be necessary to perform meso-scale 

simulations in tandem with macro-scale simulations, in a ―patch dynamics‖ and ―gap-

tooth‖ framework.
(19)(18)

 Then the ANN learning process will proceed alongside the 

querying process and the micro- and macro-calculations will need to be synchronized in 

some way. This rather elaborate setting for performing multiscale simulations will benefit 

from massively parallel computations on large processor clusters; the key issue then will 

be to efficiently orchestrate the micro- and macro-computations along with model 

assimilation using ANNs.   
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CHAPTER IV:    

NUMERICS AND CALCULATIONS 

Formulation 

It is noted that the specific application of the methods developed in this thesis is 

the interaction of a shock wave and a dusty gas. We recall the reader to the illustration in 

Figure 1 and 2 of Chapter 1, where a shock traveling from left to right passes over a 

cloud of particles, conveying momentum to the particle clouds. While the low solid 

fraction cloud disperses in an amorphous fashion, the high volume fraction cloud 

assumes a triangular form. We seek to simulate this difference in behavior in a multiscale 

simulation framework.  The key difference between the two cases mentioned above (and 

pictured in Figures 1 and 2 of Chapter 1) is that in the high-volume fraction case the 

inter-particle effects (such as shielding, shock reflections etc.) have a significant effect on 

the dynamics of the particle. Simple drag laws derived for single particles cannot be 

applied to obtain the behavior shown in Figure 2. To obtain quantification of these inter-

particle interaction effects, detailed meso-scale calculations are performed on smaller 

clusters of particles and the behavior of a typical (representative) particle is to be learnt 

using the ANN.  These meso-scale calculations are in the category of DNS, i.e. they are 

highly resolved. The computational setup for such simulations would require a domain 

large enough to contain the incident shockwave, the cloud of particles, bow shocks, and 

shock reflections without major wall interference. However, the grid size would need to 

be small enough to capture necessary details of shock-particle interaction, particle 

motion, shock wave dynamics, transient forces, and sharp interfaces. To accurately model 
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at the meso-scale the physics of shock-impacted particle laden flows need to be 

understood. 

Physics 

There are two main things to note in the physics of shock impacted particle-laden 

flows, they are the jumps in properties across the shock wave and the shock wave particle 

interaction that occurs. Most of the other properties follow standard physics in fluid flow 

and multi-phase interaction. In our case we are particularly interested in the shock wave 

in air.  

For shock-particle interaction, there are many other areas of consideration 

including the development of a bow shock that transmits much more drag to a particle 

than standard incompressible fluid flow would predict. Current drag laws for supersonic 

flow were obtained through experimental setups.
(74)

 Some drag correlations (for spherical 

particles embedded in supersonic flow) are listed in Table 2. Some of the first numerical 

attempts to quantify drag forces were to use Stokes drag, this lead to the normal drag 

laws we have seen in regions of low Re as in Figure 13.
(75)

 A comparison of drag laws at 

higher Re can be seen in Figure 14. Stokes drag disregarded turbulence, and at supersonic 

speeds, the kinematic boundary layer responsible for turbulence would not develop quick 

enough to have a significant effect on the drag.
(76)

 However, when a shock wave 

encounters an interface, the steep jump in fluid properties produces a sharp jump in drag 

force. This steep jump is purely due to the pressure differences on the particle surface due 

to the passage of the shock.  

Once the incident shock has passed over the surface and the reflected shock has 

formed a standing bow shock wave ahead of the particle a steady-state in the drag is 

reached. If the particle is free to move the final state of the particle is one of constant 

velocity and the drag on the particle goes to zero. All of these features of shock particle 

interaction must be captured by a drag law; this is obviously very difficult to do in 
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empirical models. Thus, most previous work has resorted to using drag laws as functions 

of Re and Mach to determine drag such as the ones in Table 2. This type of drag laws 

does not explicitly define unsteady drag but rather an overall drag coefficient once the 

shock has already passed.  
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Table 2: Drag Laws 

Paper Author(s): Coefficient of Drag Equation:  

“Standard” 

Clift (1978) 
(77)

 

 

 

Equation 3 

Newton 
(as cited by (78))

 

𝐶𝑑 = 0.44 
 

Equation 4 

Stokes 
(as cited by (78))

 
𝐶𝑑 = 24

𝑅𝑒  Equation 5 

Oseen 
(as cited by (78))

 
𝐶𝑑 =

24

𝑅𝑒
(1 +

3

16
𝑅𝑒) Equation 6 

Sommerfeld
(41)

 𝐶𝑑 = 112 ∗ 𝑅𝑒−0.98  Equation 7 

Boiko
(1)

, Fedorov
(79)

, 

Khmel
(80)

 
𝐶𝑑 =  1 +  𝑒

−0.43
𝑀4.67 ∗  0.38 +

24

𝑅𝑒
+

4

𝑅𝑒0.5
  Equation 8 

Saito
(78)

 𝐶𝑑 = 0.48 − 28 ∗ 𝑅𝑒−0.85 Equation 9 

Saito
(81)

 𝐶𝑑 =  
2𝑓

𝜌 ∗ 𝑈2 ∗ 𝜋 ∗ 𝑟2
 Equation 10 

Kosinski
(82)

 𝐶𝑑 =
24

𝑅𝑒
 1 + 0.183 ∗ 𝑅𝑒0.5 + 0.42 Equation 11 

Kosinski
(83)

 𝐶𝑑 =
24

𝑅𝑒
(1 + 0.15 ∗ 𝑅𝑒0.687 ) Equation 12 

Ben-Dor
(84)(85)

 𝐶𝑑 =
24

𝑅𝑒
 1 + 0.15 ∗ 𝑅𝑒0.687 +

42

1 + 425000 ∗ 𝑅𝑒−1.16
 Equation 13 

Wang
(86)

 𝐶𝑑 = 0.48 + 28 ∗ 𝑅𝑒−0.85 Equation 14 

Igra
(87)

 
log10 Cd  = 7.8231 − 5.8137(log10 Re) + 1.4129 log10 Re 2

− 0.1146 log10 Re 3 
Equation 15 
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Figure 13: Comparison of ―Standard‖, Newton, Stokes and Oseen drag laws 
(78) 

 

 

Figure 14: Comparison of drag laws 
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As seen above, there are a variety of drag laws producing essentially comparable 

magnitudes of drag. Interestingly they are all cast in terms of a Reynolds number, 

following conventional practice along the lines of Stokes and Oseen drag laws and 

subsequent corrections for incompressible flows.  Due to the fact that drag on a particle is 

transient and drag law equations are heavily dependent on relative velocity, there is no 

method utilizing drag laws to explicitly predict the drag force on a particle.  However, as 

shown below, when a particle is impacted by a shock the primary forces impelling the 

particle are inertial. In fact, for small enough particles (i.e. in the micron-range), shock 

passage is rapid enough that viscous effects can be neglected and the Euler equations can 

be employed to predict forces on the particles; this is the approach taken in this work; 

then, viscous effects come into play at much longer time scales. Thus, it is puzzling that 

all of the drag laws are cast in terms of a Reynolds number for a purely inertia-dominated 

system. In the present work, recognizing that a shock impinging on a particle conveys 

momentum to the particles purely due to inertial effects, the drag on the particle is 

obtained without recourse to the Reynolds number on the particle. The main physical 

effects that act on the particles in the meso-scale simulations are the pressure forces that 

arise due to the effect of the incident shock and the complex shock interactions that occur 

over short time scales. Secondly, the current ANN-based framework does not seek to 

develop a drag law as in Table 1, but assimilates the drag as a function implicit in the 

trained ANN. 

Scaling and Variation 

Here we reason that the application of the Euler equations is appropriate for the 

case of particles being impinged upon by a shock, a system that seeks to emulate the one 
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shown in Boiko‘s experiments (Figures 1 and 2, Chapter 1). For a shock passing over a 

spherical particle, one can separate drag into inertial drag and viscous drag. This is 

because these two types of drag operate and two widely separated time scales.  The 

inertial time scale can be estimated as: 

 𝜏𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 =  
𝑑𝑝

𝑈∞
=  

𝑑𝑝

𝑎
∗

𝑎

𝑈∞
=  

𝑑𝑝

𝑎
∗

1

𝑀
 Equation 16 

and the viscous time scale as: 

 𝜏𝑣𝑖𝑠𝑐𝑜𝑢𝑠 =  
𝑑𝑝

2

𝜈
=  

𝑑𝑝

𝑈∞
∗

𝑑𝑝𝑈∞

𝜈
=  

𝑑𝑝

𝑈∞
∗ 𝑅𝑒 Equation 17 

The ratio between the inertial and viscous time scale is: 

 
𝜏𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙

𝜏𝑣𝑖𝑠𝑐𝑜𝑢𝑠
=  

𝑑𝑝

𝑎

1

𝑀
 ∗  

𝑈∞

𝑑𝑝

1

𝑅𝑒
 =   

𝑈∞

𝑎

1

𝑀
 ∗  

1

𝑅𝑒
 = 𝑅𝑒−1 Equation 18 

where dp is the particle diameter, U∞ is the flow velocity, a is the speed of sound, M is the 

Mach number, ν is the kinematic viscosity, and Re is the Reynolds number. The 

Reynolds number is defined as the ratio of inertial forces to viscous forces. For high 

speed compressible flows, the Reynolds number is very large. It usually lies in the range 

of 10
5
 to 10

6
 even for small particles. The implication is that the effects of the viscosity of 

a fluid would not be significant until the shock is already 10
5
 to 10

6
 particle diameters 

away;  thus in determining the motion of particles in the instants following shock 

impingement viscosity may be neglected and the driving force behind shocked particle 

motion is mainly inertial drag from the shock wave. 

For the purpose of making comparisons, our simulations were kept fairly close to 

numerical calculations 
(78) (88)

 and experiments performed 
(1)(89)

 and published by others. 

As mentioned before the parameter space is defined by the Mach number, the particle 

volume fraction, the relative density of the particle to the fluid and time. Mach numbers 
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were set between 1.2 and 4.0, 
𝜌𝑝

𝜌𝑓
 was kept between 100 and 3100, and 𝜑𝑝  between 2.0% 

and 22.4% when large particle arrays were used. For larger particle arrays the setup is 

similar to the 41 particle cases; whose setup is seen in Figure 15. The shock wave was 

placed at 5 units from the left wall and traveled to the right. 

 

Figure 15: 41 Particle array setup 

Assumptions 

Because the physics of the problem certain assumptions can be made to simplify 

the problem without sacrificing accuracy of results. The following list contains the 

assumptions used and what they entail:  

- The forces of gravity are negligible; the weight of each particle and movement 

affected by gravity and buoyancy are neglected in comparison to the drag forces. 

- The fluid phase behaves as an ideal gas; the equation of state is the same as the 

ideal gas law.  

- The gas and particles are calorically perfect; the specific heat values are constant 

for both phases.  
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- The solid particles are perfectly rigid; they undergo no deformation.  

- There are no collisions; simulations stop when particle level-sets come in contact. 

In the macro-scale Lagrangian advection, particles are treated as points and may 

overlap.  

- Thermal boundary layers do not develop in the time frame of shock-particle 

interaction; therefore adiabatic particle surfaces are assumed, thermal 

conductivity is set to zero. 

- Kinetic boundary layers do not develop in the time domain; the model is inviscid, 

dynamic viscosity is ignored, no particle rotation occurs. 

- Particle size is much large than molecular scale; Brownian motion is ignored, no 

random particle motion exists, intrinsic properties remain constant. 

- Particles are inert; no chemical reaction occurs at boundaries. 

- Remaining assumptions are case specific; e.g. moving/non-moving particles, 

perfect symmetry, etc. 

Governing Equations 

The method used solved a set of a governing set of hyperbolic equations for 

compressible fluid flow. These governing equations when simplified and placed in 

conservation form in Cartesian coordinates are: 

 

S=
z

H
+

y

G
+

x

F
+

t

U 


















 

Equation 19 

where, 
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  and  

 






















p+ρEw

p+ρw

ρvv

ρuw

ρw

=H
2


  

In the equations above, 

  222

2

1
w+v+u+e=E

 
Equation 20 

where E is the total internal energy and e is the specific internal energy. For the Euler 

equations in Cartesian coordinates, the source term S


, is set to zero. The extension of the 

methodology to the Navier-Stokes equations is fairly straightforward. Closure for the 

governing equations can be achieved by utilizing a stiffened equation of state, 

    γPγρe=P 1  Equation 21 

where γ is the specific heat ratio and P is a material dependent constant. Under the 

assumption of an ideal gas, we would then have 0=P  and 𝛾 = 𝑐𝑝 𝑐𝑣 . 

For stiff fluids such as water, the specific heat ratio and the material dependent 

constant would assume the values of 5.5 GPa and 6.13 GPa, respectively. Lastly, from 

the definition of the speed of sound and using the stiffened equation of state, the speed of 

sound can be calculated by 

 
 

ρ

P+Pγ
=c 

 

Equation 22 

Immersed Boundary Method 

For the consideration of boundary conditions at an interface, an immersed 

boundary method is used. The algorithm used is an Eulerian-Lagrangian algorithm for 
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interface tracking in three dimensions, otherwise known as ELAFINT3D. The 

ELAFINT3D code utilizes a sharp interface treatment method as described by 

Sambasivan.
(90)

 The sharp interface treatment requires continuous tracking and 

representation for the interface surface. To represent the embedded interface surfaces, 

Level-sets were used, first introduced by Osher and Sethian.
(91)(92)

 The level-set is simply 

an intersection between a defined level-set field and the working plane. The level-set 

field is advected using the level-set advection equation: 

 0



ll

l V
t


 

 Equation 23 

where φl represents the level-set and
lV


represents the level-set velocity field for the l
th

 

embedded surface. For the solution methodology, a fourth-order essentially non-

oscillatory scheme for was used for spatial discretization and a fourth order Runge-Kutta 

time integration was used to solve the level-set advection equation. The value of the 

level-set field at φl any point is the signed normal distance from the l
th

 interface with φl ≤ 

0 inside the immersed boundary and φl ≥ 0 outside. The interface is implicitly determined 

by the zero level-set field defined when φl = 0 , and where the contours represent the l
th

 

immersed boundary. The normal vector and the curvature at the interface can be 

computed from the level-set field by, 

 

L

l
ln








 




and 





n

=κ



 Equation 24 

Boundary Conditions 

To handle the jumps in the mass, momentum and energy fluxes along with the 

material properties across the interface, the tracked interface will have to be coupled with 
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the flow solver to insure an accurate depiction. In the ghost fluid method, this translates 

to suitably populating the number of ghost points.
(90)

 At the interface of a solid body 

immersed in a compressible flow, the following boundary conditions were applied for 

velocity, temperature and pressure fields. For no-penetration for normal velocity: 

 nn U=v
 

Equation 25 

where Un is the center of mass velocity for the embedded rigid object. To satisfy the slip 

condition for the tangential velocity: 

 01 =
n

vt





  
and  02 =

n

vt




 Equation 26 

To satisfy the adiabatic temperature condition: 

 0=
n

T




 Equation 27 

To keep the normal force pressure balance: 

 ns

ts
aρ

R

vρ
=

n

p





2
1

 Equation 28 

and 

 nV=vn
ˆ


,  11

t̂V=vt 


, 22
t̂V=vt 


 Equation 29 

where vn is the normal velocity, vt is the tangential velocity in the interface referenced 

curvilinear coordinate, V


is the velocity vector in the global Cartesian coordinate, n̂ , 1̂t , 

2̂t are the normal and tangential vectors, R is the radius of curvature and a n is the 

acceleration of the interface; the set of boundary conditions that govern the behavior of 

the flow near the embedded solid body and must be enforced on the real fluid by suitably 

populating the corresponding ghost points. 
(90)
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Verification 

To insure the reliability of our code, the computed drag force obtained was non-

dimensionalized using the same parameters as Drikakis et al. 
(88)

 The comparison of the 

non-dimensional drag force is shown in Figure 16. A visual comparison between the 

results obtained from the present approach and that of Drikakis et al. is shown in Figure 

17 using isodensity lines. The transient drag curves produced by Drikakis et al. and those 

produced by the present calculations show minimal difference in peak magnitude and are 

rather similar, even though Drikakis et al. employed Navier-Stokes computations for 

rather modest Reynolds numbers for their calculations.  The similarity of the drag 

behavior for the Euler and Navier-Stokes computations supports the present inviscid 

computations for the shock-particle interaction, particularly for the high Reynolds 

numbers that apply to the particles considered by Boiko et al and targeted in the present 

work.  

 

Figure 16: Numerical Drag Comparison 
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Figure 17: Isodensity Contours. Drikakis (top), ELAFINT3D (bottom)  

 

In the next chapter, we employ the computational approach outlined above to 

compute shocked flows around single particles and particle clusters and describe the 

process of training the ANN to assimilate the particle drag function.  
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CHAPTER V:    

RESULTS 

Single Particle Cases 

 The ELAFINT3D code was first used to test a cylindrical particle in a 

fluid flow during varying conditions. This included experiments of post-shocked flow, a 

shocked stationary particle, and shocked moving particle. Later on, cases of shocked 

particle arrays with large number of particles were examined. The single particle tests 

were set up to illustrate the evolution of data processing the ANN needed to learn in an 

order of increasing complexity. 

Post-Shocked Flow 

The first experiment for testing the capabilities of the neural network was the case 

of post-shocked flow around a cylinder. The goal of the post shocked flow data set is to 

analyze whether or not the artificial neural network is capable of accurately predicting the 

drag curve which is simple, positive in value, and derivative is of constant sign. In the 

post shocked particle case, the particle is placed into a flow field after the shock wave has 

already passed. An example is shown as a Schlieren image where the shock is past the 

cylinder moving toward the right in Figure 18. No reflections or slip lines occur, thus the 

force on the cylinder is only due to the impending flow and bow shock development. 
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Figure 18: Post Shocked Particle Schlieren Image 

 

For the post-shocked flow experiment, the cylindrical particle was allowed to 

move based on fluid forces. The shock wave was placed after the cylinder so that the 

horizontal force imparted was an effect of the fluid interaction and not the shock. The 

particle immediately begins to feel drag force and the incident shock wave is 

uninterrupted behind the particle. The boundary conditions set for this experiment are the 

same as all of the following single particle trials. The domain was set with the inlet on the 

left side and the outlet on the right. The top and bottom of the domain was set to a 

reflective boundary condition.  

This experiment was analyzed at Mach numbers 1.4, 1.5, 1.7, 1.8, 2.0, and 2.2. 

The drag curve for Mach = 1.8 was left out so one could test the capabilities of the 

artificial neural network and its predictions. The drag forces were non-dimensionalized 

and calculated every time step. The curves produced by the ELAFINT3D code were 

made into the training data set provided to the artificial neural network. These curves are 

shown in Figure 19. 
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Figure 19: Drag Curves for Post-Shocked Cylinder 

 

The neural network was setup to read the drag data and fit a curve to the data 

using 20 neurons and 1000 iterations. With the training data normalized, the neural 

network was capable of performing all the iterations in less than 30 seconds, while the 

time to run the full numerical cases, averaged around 40,000 seconds. The prediction of 

the drag curve at M = 1.8 as well as the remaining case of Mach 1.8 run through 

numerical methods are plotted together in Figure 20. 
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Figure 20: Post-shocked ANN prediction 

 

The neural network produced a drag curve that agreed well with the computed 

drag curve. The simple nature of the drag curve compared to the time required by 

computational fluid dynamics illustrated the necessity of a faster method to extract such 

data. To better understand the prediction abilities of an artificial neural network and its 

application to fluid modeling, a more realistic example is chosen for the next section. 

Stationary Particle 

For the second test, the particle was held stationary and then hit with a shock. The 

boundary conditions were set the same as the post-shocked particle case except the lower 

wall set as symmetry. A grid domain of 500 by 250 cells was used for the drag curves 

calculated from the ELAFINT3D code. This was to match and verify the results by the 

ELAFINT3D code to those of Drikakis 
(88) 

as seen previously. The initial starting distance 

for the shock wave was set more than the radius of the cylinder away from the cylinder 
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itself. The shock was allowed to impact the cylinder and continue to travel as data for 

horizontal force was recorded over time. A Schlieren image of the one of the cases is 

shown in Figure 21. 

 

Figure 21: Stationary Particle Schlieren Image 

 

With a smaller domain size, it would be reasonable to test the effect of grid size 

and the use of local mesh refinement. For the fine grid, the number of grid cells was 

increased by four times with the grid sizes half the original. For the local mesh 

refinement two levels of refinement were used to provide grid cells near the interface 

with edges a fourth of the original. It was discovered that both the finer grid structure and 

the use of local mesh refinement show some differences. The differences were rather 

negligible given the previous error for the neural network's prediction, and in the interest 

of time, the remaining cases were carried out with the original grid size. The resulting 

drag curves from the ELAFINT3D code at Mach numbers ranging from 1.1 to 2.6 are 

shown in Figure 22. 
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Figure 22: Drag Curves for Stationary Cylinder 

 

The ANN was trained using this data set and the same number of neurons and 

number of iterations were used. The same order of computational time was observed as in 

the post-shocked flow calculations. The prediction curve of the neural network as well as 

the calculated transient drag curve is displayed in Figure 23. 

 

Figure 23: ANN Drag Prediction, Mach 1.7 
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The neural network was capable of matching the curve even into the negative 

force domain. The negative drag force arises when the incident normal shock traverses to 

the rear of the cylinder and a reflected bow shock has formed at the front of the cylinder, 

which leads to a higher pressure at the rear for a short period of time. However, in this 

case, the peak value of the drag was underestimated by the neural network. The cause of 

this is due to the neural network‘s activation function, and the summation of which is 

fitting a series of sigmoid functions to the curve. With data evenly distributed, a small 

number of data points exist near the peak. The unbalanced set causes the neural network 

to spend more time fitting to the rest of the curve than the peak. Another reason is that the 

neural network is attempting to fit with a global array, thus the overall prediction curve 

will be similar to a smoothing function and reduce peaks. The sharper the peak, the less 

likely the neural network will capture an accurate depiction. For a moving particle these 

sharper peaks do occur. Several solutions including the use of wavelet basis functions, 

neural network expansion, multi-resolution and segmentation exist; these will be 

discussed in detail later. 

Moving Particle 

For the moving particle problem, the boundary conditions, the initial conditions, 

domain size, and particle size remained unchanged from the previous experiment. The 

chosen Mach numbers allow for easier comparison to conditions used in various 

experiments.
(73)

 The artificial neural network was set up to segment the drag curves in 

time to facilitate more customized fitting in the respective segments. This would allow 

for a better fit to the drag curve. The training data provided to the artificial neural 

network is shown in Figure 24. 
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Figure 24: Moving Particle Drag Curves 

 

The total training time for the neural network was still under 30 seconds because 

the amount of data per iteration for each partition of the neural network was reduced. The 

root mean square error was significantly reduced and was less than 0.5% for 700 data 

points in the later time section. The resulting prediction output was also segmented 

according to which partition of the artificial neural network was responsible for learning 

the curve characteristics of the function. The resulting 40 neuron, partitioned artificial 

neural network produced a remarkably good prediction as shown in Figure 25. 
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Figure 25: ANN Prediction, Mach 1.3 

Multiple Particle Cases 

The drag versus time curve for a single particle is fairly easily predicted by an 

artificial neural network with only one interacting shock wave. It may be necessary to 

implement another method of data assimilation to describe more complicated functions 

and drag curves. The previous experiments grew in difficulty to examine the different 

properties of supersonic fluid flow around a cylindrical particle. From the post-shocked 

experiment, the neural network observed that the drag increased as the Mach number 

increased and the drag went down over time. The drag force of the stationary particle 

displayed negative values. With the cylinder moving, the drag peaks became more 

prominent. A single neural network is able to derive the drag correlations from numerical 

methods given a single particle. When there is particle laden flow field, a new approach 

is needed to extract the drag correlations. The necessity to analyze the different scales 

using multi-resolution analysis may become apparent. This becomes even more important 
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to data processing when the correlations are dependent on multiple parameters, as 

expected for the present problem. Another experiment was setup to test the ability of a 

multi-resolution augmented artificial neural network, or MRAANN, in learning more 

complicated flows. 

Multiple Moving Particles 

Here a dramatically different approach was used. Due to the increase in 

complexity for a particle array, multi-resolution analysis
(93)

 was first performed on the 

data to examine if there are any correlations relating to each particle and varying 𝜑𝑝 . The 

boundary conditions on the top and bottom were changed to symmetry boundary 

conditions to simulate an infinite particle array. One constant Mach number was used; for 

all the experiments of moving particles, M = 1.22 which is commonly used.
(73)(89)

 Ten 

particles were staggered, in the arrangement in Figure 26. 

 

 

Figure 26: Schlieren Image of 10 Particle Array 

 

To test other more complicated correlations for drag forces, more variables were 

introduced. In the multiple particle experiment, the MRAANN would need to learn the 

drag correlations for ten different particles, and different 𝜑𝑝 . To change the 𝜑𝑝 , the radii 

of the cylinders varied. The radii used were 0.25, .030, 0.35, and 0.40 units. Particles 

were set one ahead of each other 1 unit apart. The boundary conditions on the top and 
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bottom edges were set as symmetry conditions to simulate an infinite vertical array. With 

the cylinders set close together, reflected shock waves and expansion waves were sent in 

every direction. The results are several drag curves with many peaks and troughs; this 

type of transient drag curve is typical of arrays and arises due to the multiple shock 

reflections and interactions between these shocks and the particles.
(94)

 The drag curve for 

the third particle in the array is shown in Figure 27. 

 

Figure 27: Drag Curve for 3rd Particle in Array 

 

To aid the learning process for the neural network, the multi-resolution analysis process 

performed 6 levels of multi-resolution transforms, using the algorithm developed by Neal 

Grieb in his MS thesis 
(95)

. Many styles of multi-resolution neural network have been 

attempted.
(53)(96)

 The basic idea of multi-resolution neural networks is to partition the 

ANN to allocate neurons for more complex learning. Boubez and Peskin 
(96) 

demonstrate 

Receptive Field Partitioning in their work. For ours, the ANN expansion would occur 

globally. The ANN would begin with an initial set of weights and neurons to learn the 

coarsest level and then pass those weights to new neurons to help learn the next 
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transformation level. A pseudo-code of this process is provided in the appendix. The 

coarsest level of the multi-resolution transform of the drag curve shown in Figure 25 is 

shown in Figure 28 as a dashed line. The neural network was given the coarse training 

data and was able to match it well. The predicted curve is shown in Figure 28 as a solid 

line. 

 

Figure 28: MRT and ANN Predicted Drag Curve 

 

Each time the neural network learned a level, the training speed of the neural network 

would increase. The amount of time it took to learn a new segment decreased along with 

the error also. Shown in Figure 29 are the learning curves of the artificial neural network 

without any segmentation or multi-resolution analysis represented by the dashed line and 

the learning curve with segmentation and multi-resolution analysis represented by the 

solid line. 
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Figure 29: Learning Improvement 

 

One can see that there was a decrease in error aided by the multi-resolution analysis 

(MRA). Once the MRAANN was able improve upon the function fitting abilities, it 

needed to be tested in full. 6 levels of multi resolution transforms were performed with 32 

neural network segments. This correlates to roughly 2,000 iterations with 500 hidden 

neurons. By probing the MRAANN, a 3d hyper surface was able to be constructed to 

visually display the drag correlation with both time and 𝜑𝑝 . This surface is displayed in 

Figure 30.  
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Figure 30: 3D Drag Curve Hyper Surface 

 

The particle of radius 0.3 was left out of the training set for the MRAANN to 

predict what the drag curve would be. Three sets of training data was provided to the 

MRAANN to learn at each of the levels, for radii of 0.25, 0.35, and 0.40. The training 

data, numerical solution, and predicted drag curve are displayed together to observe 

overall characteristics in Figure 31. The training sets are displayed as the solid lines and 

show the progression in drag development. The dotted line is the actual drag curve 

obtained from the flow simulation while the dashed line is the prediction from the 

MRAANN. With all the data together, one can observe the difficulty in learning the 

complex behavior of particle shock interaction. 
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Figure 31: Training Data, ANN Prediction (dashed) and Actual Drag Curve (dotted) 

 

Without seeing the data prior to the ANN prediction, it is difficult to tell which of the 

broken lines the original set is and which the ANN prediction is. The MRAANN is 

remarkably accurate in reproducing the data set with intermediate peaks and troughs 

included. There are many variables affecting the drag curve that cannot be explicitly 

defined by any function. Even with the complex behavior entailed by several reflected 

shocks in a regular array of spheres, the MRAANN is capable of adapting to the local 

maxima and minima of the drag versus time curves. However, note that in a dusty gas, 

particles are not regularly arranged and the question remains how one could extract data 

for such disordered arrangements. The solution to this problem will be addressed in the 

following. 
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Multiple Particle Clouds 

In order to obtain a general drag curve with characteristics that could be applied to 

any particle embedded in a cloud, there needed to be data obtained from many particles in 

many possible arrangements. The best way to obtain data like this was to run simulations 

of randomly seeded clouds and to define a ―representative particle (RP)‖ embedded in the 

flow; much as in the case of ―representative elementary volumes‖ (RVEs) employed in 

volume-averaged formulations of multiphase flows One way to define such 

representative particles is to locate them at the center of a cloud of particles; this avoids 

edge effects and wave reflections from domain boundaries. The representative particles 

for one particular case are illustrated by the outline in Figure 30.  To ensure the proper 

tracking of the same centralized particles, a particle array was first formed and then the 

particle centers were perturbed. The boundary conditions were set to simulate a shock 

tube for comparison to the works Boiko et al.
(1)

, Tanno et al.
(73)

 and Sun et al.
(89)

 The left 

edge of the domain was set as an inlet, the right edge an outlet, and both the top and 

bottom edges were set as reflective boundaries. An example of the flow can be seen in 

Figure 32. 
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Figure 32: Schlieren Image and RPs of Shocked Cloud (Φvol = 22.4%) 

 

The particles in this case number 41, each are seeded in a respective location 

where a 4 by 4 grid of 16 particles is embedded in 5 by 5 grid of 25 particles as seen in 

Figure 15. This enabled the users to easily code the location of each particle, yet create an 

array where every particle is staggered off the one directly in front. The slight 

randomization completed the task of attempting to simulate a random dispersal of 

particles while still being able to easily track a few. The few that were important enough 

were the particles embedded directly in the center of the array. The center particles 

experience a much more randomized collision of reflected shocks by the few rows and 
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columns of particles behind and to each side. The drag curves for these particles were 

extracted by the integration of pressure over the level set boundary. The drag curves of 5 

particles from the center of the cloud were then averaged. The results of the averaging of 

the drag curves for the RPs can be seen as the bold curve in Figure 33. 

 

 

Figure 33: Averaged drag curve (41 random particle array, Mach 2.8) 

 

Apart from the Mach number, the other parameters that can affect the behavior of 

particles in a cloud include the volume fraction of particles, the particle density relative to 

the fluid, particle shape, collisions between particles and viscous effects as controlled by 

the Reynolds number. The last three effects are not considered in this work as they are 

expected to have secondary effects in the initial phase of shock-particle interactions.  Of 

the three parameters considered, namely Mach number (M), particle density ratio (
𝜌𝑝

𝜌𝑓
) and 
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volume fraction𝜑𝑝 , the effects of the 𝜑𝑝  variable are much more easily verified by direct 

viewing of the flow field. Upon comparison of the shape of the incident shock already 

passed over the particle arrays in Figure 32 and Figure 34, there is a very definitive 

concavity resulting from the passage over the more dense cloud. Such an obvious change 

(due to the higher impedance to shock propagation presented by the denser cloud) in the 

flow field would imply an equally large effect in drag force and thus the motion of the 

particles inside the cloud. Even though all other parameters were set the same, the dense 

cloud case in Figure 34 depicts more of a compressing of the cloud along the direction of 

flow. 

  

Figure 34: Schlieren image of shocked 41 particle cloud (𝜑𝑝  = 22.4%) 
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Volume fraction, 𝜑𝑝 , is an important parameter that is different throughout any 

dust cloud and changes over time. It is only one of a few parameters that we chose to 

vary that we deemed to have the largest affect on particle motion. A comparison of the 

averaged drag curves (for the representative particle) for varied 𝜑𝑝  can be seen in Figure 

35. 

 

Figure 35: Comparison of the effect of 𝜑𝑝  

It may be deduced that the increase of 𝜑𝑝  decreases the impulse It delivered by 

the shock on a particle. The 𝐶𝑑𝑚𝑎𝑥
 force experienced remains fairly constant but the 

decay of the force diminishes much more rapidly. This is due to the decreases in strength 

of the shock waves impinging on the RPs in the center of the cloud. Another more 

obvious variable that affects the drag force felt by shocked particles is the Mach number. 

In Figure 36 the effect of the Mach number is very obvious. As the Mach number 

increases, the 𝐶𝑑𝑚𝑎𝑥
 felt rises dramatically. 
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Figure 36: Comparison of the effect of Mach number 

 

This dramatic rise is directly correlated to the shock strength in the high Mach 

number flow. It is the flow velocity that in turns defines the Reynolds number that most 

fluid codes based on the non-dimensional parameters. This is why so many drag laws 

depend on the Reynolds number, but the Mach number is a far more relevant parameter 

in the initial shock-particle interaction phase. It has already been shown that the main 

separating factor between Reynolds and Mach number is viscosity. It has also been 

shown that viscosity does not affect the drag force on a particle this early. This is why we 

believe that developing the variation of the drag on an RP with respect to the Mach 

number in an inviscid model is a better parameter for lifting drag information from the 

meso-scale to the macro-scale. 
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 The next parameter examined in our experiments was that of the mass of the 

particle. In terms of non-dimensional variables, this correlates to the mass of the particle 

as a ratio of the density of the solid particle and the fluid surrounding it. Most of the 

experimental models of shock-particle interactions employed spheres made of acrylic and 

copper.
(1)

 The medium used was air, and because of those models we chose to set 
𝜌𝑝

𝜌𝑓
 near 

1000. To encapsulate motion a little easier, we mainly varied 
𝜌𝑝

𝜌𝑓
 lower. The comparison 

of drag forces are displayed in Figure 37. The data obtained shows correlations per each 

variable, the ANN will hopefully connect them together and engage its application to 

multiscale modeling. 

 

Figure 37: Comparison of the effect of 
𝜌𝑝

𝜌𝑓
 

 

 



www.manaraa.com

73 
 

 

CHAPTER VI:  

APPLICATION OF ANN-BASED LEARNING TO MULTI-SCALE 

COMPUTATIONS 

Information passage 

To utilize the correlations obtained previously to use in multi-scale modeling, 

information must be lifted from the meso-scale. The transient drag curve is quite a lot of 

information to pass between scaling levels in multiscale modeling. With regard to the 

drag curves acquired, there were two important parameters needed for particle motion. 

Both Kosinska
 (97)

 and Kosinski
 (82) (83)

 showed that the linear motion of a rigid body even 

those immersed in shock waves can be found directly from Newton‘s second law and 

derivations of it. Newton‘s second law directly correlates force to mass and acceleration. 

To determine the speed and position we would need to know the momentum transferred 

and the rate of momentum transferred. The momentum and rate of transfer can be found 

as an expression of It and τr. 

From Equation 11, we have a simple method of determining the total impulse, 𝐼𝑡 , 

a particle would experience over time. Integrating Equation 11 from instant of shock 

impact to long times (when the inertia delivered by the shock has equilibrated particle 

motion, but still short enough that viscous effects can be neglected)  results in: 

 𝐼𝑡 = 𝐶𝑑𝑚𝑎𝑥
∗ 𝜏𝑟  Equation 30 

The maximum drag, 𝐶𝑑𝑚𝑎𝑥
, is easily acquired, thus the next step be to fit the 

relaxation time, 𝜏𝑟 , to the drag curve of each case the ANN will learn from for Mach 

number, 
𝜌𝑝

𝜌𝑓
 and 𝜑𝑝 . 
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Single particle motion 

For each case presented, the quantified values for particle motion, 𝐶𝑑𝑚𝑎𝑥
and 𝜏𝑟  to 

attain It were found. The value of It and τr were found by numerical integration and fitting 

an exponential decay function by minimizing the error between the drag curve and the 

exponential function. One such fitting with the impulse highlighted can be seen in Figure 

38. 

 

Figure 38: Exponential fitting to drag curve 

 

We began with the data from our single particle cases because the drag curve 

fitting was simpler and straight forward without large errors due to the oscillations in 

drag. From that data we fed it into the ANN and obtained a hyper-surface to incorporate 

each variable. The 3 dimensional breakdown between two of the variables and there 

target parameter can be seen in the plots of Figure 39 and Figure 40 

. 
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Figure 39: ANN predicted hyper-surface for relaxation 

 

Figure 40: ANN predicted hyper-surface for It 

 

It has already been determined, and one can see from the plots, that both the It and 

τr increase with Mach number. This has been shown many times before by other 

researchers. 
(78) (73) (89)

 It is interesting that the value of It actually gets steeper as the Mach 

number increases, making it a high order relationship. It is also important to note that 
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both It and 𝜏𝑟  seem to approach zero near Mach 1. One can accredit that to the dramatic 

decrease in drag once relative velocity falls below the supersonic range. As for the effect 

that  
𝜌𝑝

𝜌𝑓
 has, both It and τr level off toward higher values, as 

𝜌𝑝

𝜌𝑓
 approaches the 

representation of an infinitely massive or stationary particle. For when 
𝜌𝑝

𝜌𝑓
 approaches 

zero, both It and τr approach zero as a very small particle‘s motion should nearly behave 

the same as the fluid. 

General Particle Motion 

It is easy to see how a single particle would behave, but with multiple particles 

there occurs many complex reflective shock waves. To ensure that the general behavior 

of shocked particles is accurately learned by a neural network, data needs to be collected 

from many particles in a random orientation. Therefore the effect of a specific array setup 

would be diluted and more general values could be collected. The values of 𝐶𝑑𝑚𝑎𝑥
force 

and τr are still the two most important parameters that can be directly obtained from the 

ELAFINT3D code. For particle motion that occurs in a dusty gas, another input 

parameter should be taken into consideration. The value of 𝜑𝑝  plays a particularly 

important part in shock-impacted particle laden flows to learn how much the 𝐶𝑑𝑚𝑎𝑥
, τr 

and It is affected by the 𝜑𝑝  in a multiple particle cloud, 45 different cases were performed 

using initial values recorded in Table 3. Each case had 41 particles placed in a staggered 

array and then randomly perturbed to simulate a dusty gas while still being set at a 

standard interval to better capture the affects of 𝜑𝑝 . 
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Table 3: Input Parameters of Training Cases 

Mach 𝜌𝑝

𝜌𝑓
 

Φvol [%] Mach 𝜌𝑝

𝜌𝑓
 

Φvol [%] Mach 𝜌𝑝

𝜌𝑓
 

Φvol [%] 

1.2 100 2.0 2.0 1000 8.0 2.8 1000 22.4 

1.2 100 8.0 2.0 1000 12.6 2.8 3100 8.0 

1.2 100 12.6 2.0 1000 22.4 3.2 310 8.0 

1.2 310 22.4 2.4 100 8.0 3.2 310 22.4 

1.2 1000 2.0 2.4 100 22.4 3.6 100 2.0 

1.2 1000 8.0 2.4 310 2.0 3.6 100 8.0 

1.2 1000 12.6 2.8 31 8.0 3.6 100 12.6 

1.6 31 2.0 2.8 100 2.0 3.6 1000 2.0 

1.6 310 8.0 2.8 100 8.0 3.6 1000 8.0 

2.0 100 2.0 2.8 100 12.6 3.6 1000 22.4 

2.0 100 8.0 2.8 100 22.4 4.0 100 22.4 

2.0 100 12.6 2.8 310 8.0 4.0 310 2.0 

2.0 100 22.4 2.8 1000 2.0 4.0 1000 8.0 

2.0 310 12.6 2.8 1000 8.0 4.4 1000 8.0 

2.0 1000 2.0 2.8 1000 12.6 4.4 3100 12.6 

 

 

The ANN was trained twice, once for 𝐶𝑑𝑚𝑎𝑥
 and once for τr. The value of It is implied by 

the application of these two variables. The training period lasted for 5000 iterations with 

25 neurons and the convergence curve is seen in Figure 41. The relationship of Mach 

number and 𝜑𝑝  versus𝐶𝑑𝑚𝑎𝑥
 can be seen in Figure 42, Mach number and 𝜑𝑝  versus τr, in 

Figure 43, and Mach number and 𝜑𝑝  versus It in Figure 44. 
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Figure 41: ANN error convergence for mulitiple particles. 

 

Figure 42: ANN predicted hyper surface for 𝐶𝑑𝑚𝑎𝑥
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Figure 43: ANN Predicted hyper surface for τr 

 

Figure 44: ANN Predicted hyper surface for It 

 

It becomes obvious that the major contributor for 𝐶𝑑𝑚𝑎𝑥
 is the Mach number. The 

𝜑𝑝  does not seem to affect 𝐶𝑑𝑚𝑎𝑥
 at low Mach numbers. As for τr, both Mach number and 

𝜑𝑝  have great affects. At low Mach numbers, the τr greatly increases. Drag force at 

subsonic velocities are relatively slow to apply. The 𝜑𝑝  has a major affect only at low 
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Mach numbers. At higher Mach numbers the effect of 𝜑𝑝  goes away, soon thereafter, one 

may assume that the particles are no longer going to be shielded by particles, but actually 

hit by them. The surface trend for It is somewhat expected, the general trend being that It 

increases as the 𝜑𝑝  decreases and Mach number increases. For the averaged data for all 

cases, refer to Table A1 in the appendix. 

Of course there exist errors in our model that arise from many areas, for example 

the averaging of multiple individually shocked particles. Very little error was displayed 

in the single particle cases because there was no random particle-shock interaction from 

reflections. Testing consisted of randomly selecting a single data point and removing it 

from the training set. The ANN would be reset and learn the new training set without the 

point being tested. The ANN was then queued at the test point and was then checked for 

error. The testing phase consisted of testing a few points by this method; with only one 

point missing on a multidimensional map, visualization is difficult to show. Testing by 

selection and removal showed errors all under 2%. For the multiple particle cases, errors 

ranged greatly. During the training phase of the multiple particle cases, the average error 

for the training data was less than 1%. However, due to the unsteady curvature and some 

areas of inconsistent trends, the average error for the prediction of randomly removed and 

tested points inside the ANN prediction curve for It were 7.3%. The largest error for the 

tested cases resulted from the Mach 4.4 cases which are also responsible for the extra 

bump on the plots of 𝐶𝑑𝑚𝑎𝑥
 and It. When cases where the Mach number was 4.0 or above 

was left out and tested for, errors between 12.2% and 14.6% would occur.  
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Lagrangian Advection 

Now that we have a trained ANN with the correlation of Mach number, 
𝜌𝑝

𝜌𝑓
 and 𝜑𝑝  

to It on a particle, we can use it to predict how a shock impacted particle will move. 

Restating what was mentioned before, one may use the 𝐶𝑑𝑚𝑎𝑥
 and τr to recreate a drag 

curve represented by exponential decay from the 𝐶𝑑𝑚𝑎𝑥
 at the ―point‖ of impact. With a 

defined drag curve, the trajectory of a particle can be predicted by simple Lagrangian 

advection using Newton‘s first law of motion. We performed this advection scheme with 

case data to match previous experiments of Boiko. Our data was limiting to simulating 

values of 𝜑𝑝  down to 2.0 percent due to the constraints of domain size, particles placed 

ever 15 diameters away would have produced over 5 million grid cells. The result of 

using data from the ANN and this Lagrangian advection scheme can be seen as the solid 

line alongside the experimental work of Boiko et al.
(1)

 in Figure 45.  

 

 

Figure 45: Comparison of Lagrangian Advection 
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The symbols are directly from experimentation, the dashed line is Boiko‘s 

computation, and the solid line is our Lagrangian advection using lifted behavior learned 

by the ANN. To insure the proper values of It were used, an numerical integration scheme 

was used on our data. This lead to a slightly higher initial peak and exponential 

representation tends to decay a slightly faster than normal as seen in Figure 38. The 

largest error is near the beginning where the initial impact of our model is piecewise and 

thus sharper. However, the ANN and Lagrangian advection model is a close 

representation of how a particle moves. 

Macro-Scale Phenomena 

 Now that we are able to predict movement of a particle using data from the meso-

scale, we should be able to adapt that to multiple particles at the macro-scale. With the 

ELAFINT3D code running on a serial machine with limited random access memory, we 

are currently limited to particle clouds of less than 180 particles. To maintain the same 

staggered and perturbed setup, we chose to model a cloud using 145 particles. This 

particular case ran with a domain size of 60 by 70 𝑑𝑝  and the smallest cells having a grid 

size of 0.03 𝑑𝑝  approaching 4 million cells and thus reaching the limit of memory on the 

machine. To arrive at this point, the model ran more than 25 non-dimensional units of 

time for about a wall clock time of three weeks. A Schlieren image of this case can be 

seen in Figure 46. We were able to then use the drag data from each particle to advect 

their location further. The result was merely the compression of the cloud moved a few 

domains along the flow direction. 
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Figure 46: Schlieren image of large particle cloud  

(145 particles, Mach = 2.0, 𝜑𝑝  = 8.0%) 

 

 There are no experimental demonstrations of this type of cloud; however, in the 

experimental work of Boiko et al. 
(1)

 a macro-scale phenomenon of larger and denser 

dusty gas clouds emerges. Referring once again to Figure 2 (Chapter 1), one can observe 

the formation of a sideways ―V‖. This is a phenomenon that arises only in the cases 

where the dust clouds are sufficiently dense. It is not observable Figure 1 or in the other 

cases performed by Boiko et al.
(1)

 as seen in Figure 47. In each of the cases presented, a 

thin band of particles is shocked.  
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Figure 47: Shock wave particle interaction (Boiko et al.)
(1)

 

In any case, the Mach number and the 
𝜌𝑝

𝜌𝑓
 remains virtually the same throughout 

the whole domain, yet the particles obviously move at different velocities, which mean 
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they would have different values of It. The first two factors that arise that may affect It are 

𝜑𝑝  and the shielding of the shock wave by particles ahead in the flow domain. Shielding 

is of course directly related to 𝜑𝑝  as well as the total number of particle in the domain. 

Since the total number of particles in a domain is an extrinsic property of a dust cloud, it 

is not advisable to use it. This would have to be utilized via a decrease in Mach number. 

Another case was performed in where a triangular dust cloud was shocked to observe the 

effect of shielding. Both this case and others found that within a certain 𝜑𝑝 , the total 

number of particles does not drastically affect particle motion.
(1)(80)(85)

 Thus the main 

contributing factor to the variance in particle motion in a single domain with constant 

Mach number and 
𝜌𝑝

𝜌𝑓
, is 𝜑𝑝 . Knowing this, a much larger simulation can be performed 

with drag forces obtained from an ANN which learned from cases with varying 𝜑𝑝 . 

Macro-scale simulation 

For the macro-scale simulation, we used a Lagrangian advection scheme to move 

particles based on the drag force obtained from 𝐶𝑑𝑚𝑎𝑥
 and τr predicted by an ANN given 

Mach number, 
𝜌𝑝

𝜌𝑓
 and 𝜑𝑝 . The Mach number and 

𝜌𝑝

𝜌𝑓
 was predefined while the 𝜑𝑝  was 

calculated based on the area fraction (in 2D) occupied by the particles, computed for a 

box of 20 by 20 diameters in the level set field with a domain size of 1024 by 512 grid 

points as seen in Figure 48, Figure 49 and Figure 50. 
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Figure 48: 𝜑𝑝  for sparse dust cloud 

 

Figure 49: 𝜑𝑝  for dense dust cloud 
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Figure 50: 𝜑𝑝  for dust band 

Assumptions 

To aid in modeling the shock-impacted particle-laden flow, certain assumptions 

were made. The assumptions and their implications are as follows: 

- Particles are normally distributed in both the x and y directions for dust clouds. They 

are completely still at beginning with no velocity components. 

- All small scale forces are neglected. This ignores the effects of buoyancy, gravity, 

electromagnetic forces, chemical attraction, or Brownian motion. 

- Particles are treated as points. No collisions occur in calculations and particles may 

over lap or pass through each other. To stimulate y direction and small forces, a 

random purturbment of location was included. 

- 𝜑𝑝  is computed by summing the surrounding first level set, particle volumes 

overlapping are neglected. 

- 𝐶𝑑𝑚𝑎𝑥
 force and τr computed by ANN in the first step, thus this is as if the incident 

shock impacted every particle at the same time 
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- Largest variable factor in drag is 𝜑𝑝 , particles with very high 𝜑𝑝  barely move, due to 

lack of collisions. 

- For an example of the algorithm, a pseudo code has been provided in the attachments. 

General Motion 

To ascertain that indeed the formation of the ―V‖ shaped phenomenon is due to 

that of the variation in 𝜑𝑝  several macro-scale models were performed. They included 

simulations that were drag law based, with low 𝜑𝑝 , with high 𝜑𝑝 , and with a uniform 

band 𝜑𝑝 . For the case based on a drag law, the ―standard‖ drag law found in Table 2 was 

used to determine the force an each particle. This straightforward method and the 

assumptions made above caused every point to move roughly the same amount as seen in 

Figure 51.  

For the sparse dust cloud case, Figure 52, similar actions occurred due to a small 

variance in𝜑𝑝 . Demonstrated experimentally, little difference in movement also occurs in 

Figure 1, of Boiko‘s experiments. With 𝜑𝑝  and other parameters all the same, each 

particle should experience the same motion. When the density of particle is increased 

such as in Figure 53, a ―V‖ phenomenon would appear as seen in Figure 2 by Boiko et 

al.
(1) 

The formation of this phenomenon occurs only at the macro-scale when there is a 

wide range in 𝜑𝑝 . In Boiko‘s experiment one can observe a block of particles in the 

middle. Just a block alone is not capable of producing a strong enough variance in 

particle velocity to form a ―V‖. The simulation in Figure 46 demonstrated no large 

differences in It or velocity. When a band a particles was used, as in Figure 54, more 

particles were spread out just behind the cloud. This is most obvious in Figure 54d and 

Figure 47d frame 2 where the left side of the block is evidently denser than the right.
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 (a) Time = 0.0 (b) Time = 200 

 
 (c) Time = 400 (d) Time = 600 

 
 (e) Time = 800 (f) Time = 1000 

 

Figure 51: Shock-impacted particle laden flow simulation  

(1000 particles, Mach = 2.0, drag law based) 
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 (a) Time = 0.0 (b) Time = 200 

 
 (c) Time = 400 (d) Time = 600 

 
 (e) Time = 800 (f) Time = 1000 

 

Figure 52: Shock-impacted particle laden flow simulation  

(200 particles, Mach = 2.0, 𝜑𝑝  based ANN) 
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 (a) Time = 0.0 (b) Time = 300 

 
 (c) Time = 600 (d) Time = 900 

 
 (e) Time = 1200 (f) Time = 1500 

 

Figure 53: Shock-impacted particle laden flow simulation  

(1000 particles, Mach = 2.0, 𝜑𝑝  based ANN) 
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 (a) Time = 0.0 (b) Time = 150 

 
 (c) Time = 300 (d) Time = 450 

 
 (e) Time = 600 (f) Time = 750 

 

Figure 54: Shock-impacted particle laden flow simulation  

(1000 particles, Mach = 2.0, 𝜑𝑝  based ANN) 
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CHAPTER VII:    

CONCLUSIONS AND RECCOMENDATIONS 

Conclusions 

The objective of this thesis was to efficiently model the interaction of a shock 

wave and a dusty gas. We wanted to accomplish this by formulating an algorithm to learn 

the behavior of meso-scale simulations. We successfully set up and used a feed-forward 

back propagation artificial neural network to learn the drag curves from single and 

multiple particle cases. For application to multiscale modeling, we chose important 

characteristics from the meso-scale simulations to be ―lifted‖ in to a macro-scale 

simulation. The values of 𝐶𝑑𝑚𝑎𝑥
 and τr formulated a transient representation of It. The 

values of It learned using the ANN and had an average error of less than 0.5% in training 

and 2.0% in testing for single particles and less than 1.0% and 8.0% for multiple 

particles. The multiple particle cases provided more variance in the data of each particle 

separately than the variance of the ANN learning. The learned behaviors by the ANN 

were successfully used in macro-scale simulations. Though the method used did not 

contain any collision models and many simplifying assumptions were made, the different 

macro-scale simulations demonstrated the great improvement of using an ANN and 

multiscale methods over traditional methods using predefined drag laws. There remain 

some limitations on the general problem that could be accurately modeled, mostly those 

dependent on the scale separation as well as human intervention for the selection of 

necessary data to be lifted, however, the general method of behavior learning and data 

lifting was successful. 
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Computational Savings 

The largest simulation that was performed for this thesis was that of a shock 

impacted 145 particle cloud. This simulation took a wall clock time of nearly 3 weeks on 

a serial processor and used 16 gigabytes of random access memory prior to stalling out 

near 30 non-dimensional units of time between 3 million and 4 million cells. To run a 

simulation with 1000 particles in a domain nearly 125 times larger it would take the same 

machine, assuming limitless memory, roughly 50 years. The ANN learned behavior in 

the macro-scale simulation performed such a task in less than one minute. The data 

processed was 45 cases each lasting a few days but is capable of running in parallel. In 

either case, with the use of behavioral learning of ‗lifted‘ meso-scale variables, much 

time was saved. Disregarding a lifting of single variables, the ANN could still learn the 

entirety of the drag curve for complicated scenarios if aided by multi-resolution analysis.  

Multi-Resolution Augmented ANN 

In the case where multi-resolution analysis was performed, there was a significant 

drop in error after the multi-resolution which can be explained by two reasons. The first 

reason is that the number of data points decreased, allowing the neural network to 

perform half the number of calculations as well as decrease the summation of errors over 

all the data points. The second reason is the softer gradient decent the back propagation 

algorithm was performed on a curve that does not have large slopes present. The most 

drastic improvement is time needed for all the iterations to reach a convergence point. 

Although the total number of iterations was kept the same, when and what to 

iterate the learning algorithm for the neural network to identify flow behavior was much 

more selective. The capturing of flow characteristics would be very difficult for a single 
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artificial neural network. The MRAANN decomposed the drag curves to functions that 

could be learned very quickly and then to reconstruct the original drag curve. A single 

neural network assigning different sections to different partitions of hidden layers is 

allowed to grow. Each level of transformation doubles the number of iterations per level, 

but reduces the time to calculate the updating scheme.  

 

Figure 55: Multi-Resolution Augmented Artificial Neural Network 

 

The theoretical number of calculations saved with the MRA approaches ½ as the number 

of transformed levels approached infinity.
(97)

 This would reduce the number of iterations 

per level to less than one. The only way around this is to increase the number of 
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iterations. However, because the error is also decreasing, to achieve the same overall 

accuracy, the MRAANN is able to perform a smaller number of iterations for the same 

accuracy. 

The segmentation of a neural network would greatly increase the accuracy, but 

there may not be a correlation learned in multiple dimensions. A single data point is 

learned easily, but it will not produce the ability to predict flow behavior. Although the 

MRA is capable of reducing time and increasing accuracy, it is not capable of making 

predictions alone. The MRAANN still requires human interaction to determine the best 

set of variables to balance speed and accuracy.  A method to avoid this and increase 

speed further is to assign more neurons, segments, or iterations based upon the amount of 

noise present and the value of the detail coefficients. Overall, the implementation of a 

MRAANN in data processing and fluid modeling has already been shown to be 

promising.  However, due to the nature of multiscale modeling, the learning an ANN 

needs to undergo only has to contain data for characteristics that need to be lifted. For the 

most part, these characteristics, such as 𝐶𝑑𝑚𝑎𝑥
 and τr need only a simple learning 

algorithm. The use of multi-resolution analysis at this scale is deemed unnecessary. 

Recommendations and Future Work 

Future recommendations for work in this area mainly entail the proper selection, 

setup and lifting data of the training cases or the design of an ANN for more complex 

learning. One may directly place the neural network into a fluid code to aid shock 

impacted particle laden flow simulations carry out calculations for particle motion after 

the shock wave has passed over including particle collisions. Currently there exists the 

necessity for human intervention for proper data lifting and restriction. In the future, the 
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use of wavelets and multi-resolution analysis may be used to select and utilize data 

passed between scales. For ANN improvement, many methods exist, such as the 

MRAANN or a new method coined by Ghaboussi et al. 
(98)

 as ―autoprogressive training‖ 

Autoprogressive training 

In autoprogressive training, the ANN is training for global information as usual 

and from any type of testing or simulation procedure. The specific examples are then 

used to train the ANN and set the basis for learning. This base level of learning is very 

similar to the coarse level training in the MRAANN. However, the when the weights are 

‗frozen‘ in autoprogressive training, they remain frozen while additional neuron are 

added and the next case is learned.
(98)

 There are no duplicated weights, resolution 

refinement, or segmented data sets as in the MRAANN. In an autoprogressive trained 

artificial neural network, the hidden layers expand continuously and progressively as the 

dataset becomes more complicated. There should be minimal human intervention in the 

learning phase and expansion of the network. Further analysis phases which introduce 

more data can easily be updated and added without retraining the ANN for the whole data 

set. 

This work represents a first step in constructing a technique to couple scales 

together in a multiscale framework. The main contribution of this thesis is to develop the 

capability to use an ANN to ―lift‖ information from detailed meso-scale calculations (or 

perhaps even from experiments if they are available). The macro-scale calculations 

access the lifted information by simply querying the ANN (a procedure that rapidly 

provides information to the macro-scale on fairly complicated behavior of the particles as 

the meso-scale). The macro-scale calculations are then advanced further and information 
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is accessed from the ANN at each step of the macro-calculation. This type of interaction 

between the micro- and macro-scale, affected by trained ANNs represents a first step in 

developing a true multiscale simulation capability, in which it may be necessary to 

perform meso-scale simulations in tandem with macro-scale simulations, in a ―patch 

dynamics‖ and ―gap-tooth‖ framework.
(19)(18)

 Then the ANN learning process will 

proceed alongside the querying process and the micro- and macro-calculations will need 

to be synchronized in some way. This rather elaborate setting for performing multiscale 

simulations will benefit from massively parallel computations on large processor clusters; 

the key issue then will be to efficiently orchestrate the micro- and macro-computations 

along with model assimilation using ANNs.   These ideas are being pursued in ongoing 

work. 



www.manaraa.com

99 
 

 

REFERENCES 

1. Boiko, V.M., Kiselev, V.P., Kiselev, S.P., Papyrin, A.N., Poplavsky, S.V., Fomin, 

V.M. Shockwave Interaction with a Cloud of Particles. Novosibirsk, Russia : 

Institute of Theoretical and Applied Mechanics, 1997, ShockWaves, Vol. 7, pp. 

275-285. 

 

2. Clayton T. Crowe, Martin Sommerfeld, Yutaka Tsuji. Multiphase flows with 

droplets and particles. s.l. : CRC Press, 1988. 

 

3. Baer, M.R., Nunziato, J.W. A two-phase mixture theory for the deflagration-to-

detonation transition (ddt) in reactive granular materials. 6, 1986, International 

Journal of Multiphase Flow, Vol. 12, pp. 861-889. 0301-9322(86)90033-9. 

 

4. Verberg, A. J., Ladd, C.R. Lattice-Boltzmann Simulations of Particle-Fluid 

Suspensions. 5, Springer Netherlands : Springer Netherlands, Dec 22, 2004, 

Journal of Statistical Physics, Vol. 104, pp. 1191-1251. A:1010414013942. 

 

5. Smereka, J. A. Sethian and Peter. Level set methods for fluid interfaces. s.l. : 

Annual Reviews, Jan 2003, Annual Review of Fluid Mechanics, Vol. 35, pp. 341-

372. annurev.fluid.35.101101.161105. 

 

6. Iverson, R.P. Denlinger, R.M. Flow of variably fluidized granular masses across 

three-dimensional terrain with numerical predictions and experimental tests. 131, 

Vancouver : American Geophysical Union, Jan 10, 2001, Journal of geophysical 

research, Vol. 106, pp. 553-566. AGU2000JB900330. 

 

7. Xu, B.H., Yu, A.B. Numerical simulation of the gas-solid flow in a fluidized bed 

by combining discrete particle method with computational fluid dynamics. 16, 

s.l. : Elsevier, Aug 1997, Chemical Engineering Science, Vol. 52, pp. 2785-2809. 

S0009-2509(97)00081-X. 

 

8. Oscarson, J.H., Graff, K.F. Spall fracture and dynamic response of materials. 

Columbus : Storming Media, 1968. 

 

9. Gokhale, S.S., Krier, H. Modeling of unsteady two-phase reactive flow in porous 

beds of propellant. 1, 1982, Progress in Energy and Combustion Science, Vol. 8, 

pp. 1-39. 0360-1285(82)90007-7. 

 

10. Tamburello, D.A., Amitay, M. Active manipulation of a particle-laden jet. 9, s.l. : 

Elsevier, Sept 2008, International Journal of Multiphase Flow, Vol. 34, pp. 829-

851. j.ijmultiphaseflow.2008.02.006. 

 

11. Kleinstreuer, C. Modern Fluid Mechanics: Intermediate Theory and Applications. 

s.l. : Springer, 2009, Fluid Mechanics and Its Applications, Vol. 87, p. 620. 

9781402086694. 



www.manaraa.com

100 
 

 

 

12. Loth, E. Numerical approaches for motion of dispersed particles, droplets and 

bubbles. s.l. : Pergamon, 2000, Progress in Energy and Combustion Science, Vol. 

26, pp. 161-223. 

 

13. Unger, J.F, Konke, C. Coupling of scales in a multiscale simulation using neural 

networks. 21, s.l. : Elsevier, Nov 2008, Computers & Structures, Vol. 86, pp. 

1994-2003. j.compstruc.2008.05.004. 

 

14. Balachandar, S. A scaling analysis for point-particle approaches to turbulent 

multiphase flows. 9, s.l. : Elsevier, Sept 2009, International Journal of Multiphase 

Flow, Vol. 35, pp. 801-810. j.ijmultiphaseflow.2009.02.013. 

 

15. Hou, T.Y., Wu, X.H. A multiscale finite element method for elliptic problems in 

composite materials and porous media. 1, Pasadena : s.n., 1997, Journal of 

computational physics, Vol. 134, pp. 169-189. 

 

16. Collis, M.W., Lele, A.K., Mackley, M.R., Graham, R.S. Constriction flows of 

monodisperse linear entangled polymers: Multiscale modeling and flow 

visualization. 2, 2005, Journal of Rheology, Vol. 49, pp. 501-522. 1.1849180. 

 

17. Weinan, E., Engquist, B., Li, X., Ren, W., Vanden-Eijnden, E. The 

Heterogeneous Multiscale Method: A Review. 3, Princeton : Springer, June 2007, 

Communications in Computaitonal Physics, Vol. 2, pp. 367-450. 

 

18. Nuggehally, M.A., Shephard, M.S., Picu, R.C., Fish, J. Adaptive model selection 

procedure for concurrent multiscale problems. s.l. : Begell House, 2007, 

International Journal for Multiscale Computational Engineering, Vol. 5, pp. 369-

386. IntJMultCompEng.v5.i5.20. 

 

19. Hyman, J.M. Patch Dynamics for Multiscale Problems. 3, Los Alamos : IEEE, 

May 2005, Computing in Science and Engineering, Vol. 7, pp. 47-53. 

MCSE.2005.57. 

 

20. Ge, W., Chen, F., Gao, J., Huang, J., Liu, X. Analytical multi-scale method for 

multi-phase complex systems in process engineering--Bridging reductionism and 

holism. 13, July 2007, Chemical Engineering Science, Vol. 62, pp. 3346-3377. 

j.ces.2007.02.049. 

 

21. Liu, W.K., Karpov, E.G.,  Zhang, S., Park, H.S. An introduction to computational 

nanomechanics and materials. 17, s.l. : Elsevier, May 7, 2004, Computer Methods 

in Applied Mechanics and Engineering, Vol. 193, pp. 1529-1578. 

j.cma.2003.12.008. 

 

22. Batchelor, G.K. An Introduction to Fluid Dynamics. Cambridge : Cambridge 

University Press, 2000. p. 635. 978-0521663960. 



www.manaraa.com

101 
 

 

 

23. Rosenhead, L. Laminar Boundary Layers. s.l. : Dover Publications, 1988. p. 687. 

9780486656465. 

 

24. Ebrahimi, F., Sahimi, M. Grid coarsening, simulation of transport processes in, 

and scale-up of heterogeneous media: Application of multiresolution wavelet 

transformations. 8, s.l. : Elsevier, Aug 2006, Advances in Disordered Materials, 

Vol. 38. j.mechmat.2005.06.013. 

 

25. Aarnes, J.E., Krogstad, S., Lie, K.A. A Hierarchical Multiscale Method for Two-

Phase Flow based upon Mixed Finite Elements and Nonuniform Coarse Grids. 2, 

Norway : Sintef Ict, 2006, Multiscale Modeling and Simulation, Vol. 5, pp. 337-

363. 

 

26. Migliavacca, F., Balossino, R., Pennati, G., Dubini, G., Hsia, T.Y., Leval, M.R., 

Bove, E.L. Multiscale modelling in biofluidynamics: application to reconstructive 

paediatric cardiac surgery. 6, s.l. : Elsevier, 2006, Journal of Biomechanics, Vol. 

39, pp. 1010-1020. j.jbiomech.2005.02.021. 

 

27. Batchelor, G.K. The Theory of Homogeneous Turbulence. Cambridge : 

Cambridge University Press, 1982. 9780521041171. 

 

28. Wilcox, DC. Turbulence modeling for CFD. Canada : DCW Industries, 2006. 

 

29. Pierre, S. Large eddy simulation for incompressible flows: an introduction. 

9783540263449, s.l. : Springer Science & Business, 2006. 

 

30. Glotzer, S.C., Paul, W. Molecular and mesoscale simulation methods for polymer 

materials. s.l. : Annual Reviews, 2002, Annual Review of Materials Research, 

Vol. 32, pp. 401-436. annurev.matsci.32.010802.112213. 

 

31. Efendiev, Y., Hou, T. Multiscale Finite Element Methods for Porous Media Flows 

and Their Applicaitons. Pasadena : CalTech, Feb 11, 2006, Applied Numerical 

Mathematics, Vol. 57, pp. 577-596. 

 

32. Lunati, I., Jenny, P. Multiscale finite-volume method for compressible multiphase 

flow in porous media. 2, Zürich : Elsevier, Aug 10, 2005, Journal of 

Computational Physics, Vol. 216, pp. 616-636. j.jcp.2006.01.001. 

 

33. Abgrall, R., Perrier, V. Asymptotic Expansion of a Multiscale Numerical Scheme 

for Compressible Multiphase Flow. 1, Bordeaux : SIAM, 2006, SIAM Journal on 

Multiscale Modeling and Simulation, Vol. 5, pp. 84-115. 050623851. 

 

34. Dzwinel, W., Yuen, D.A., Boryczko, K. Bridging diverse physical scales with the 

discrete-particle paradigm in modeling colloidal dynamics with mesoscopic 



www.manaraa.com

102 
 

 

features. 7, s.l. : Elsevier, 2006, Chemical engineering science, Vol. 61, pp. 2169-

2185. j.ces.2004.01.075. 

 

35. Mäkipere, K., Zamankhan, P. Simulation of Fiber Suspensions—A Multiscale 

Approach. 4, New York : American Society of Mechanical Engineers, 2007, 

Journal of Fluids Engineering, Vol. 129, pp. 446-456. 1.2567952 . 

 

36. Fernández, M.A., Milisic, V., Quarteroni, A. Analysis of a geometrical multiscale 

blood flow. 1, Février : SIAM, 2005, Multiscale Modeling and Simulation, Vol. 4, 

pp. 215-236. 030602010. 

 

37. Lagana, K., Balossino, R., Migliavacca, F., Pennati, G., Bove, E.L., Leval, M.R., 

Dubini, G. Multiscale modeling of the cardiovascular system: application to the 

study of pulmonary and coronary perfusions in the univentricular circulation. 5, 

s.l. : Elsevier, May 2005, Journal of Biomechanics, Vol. 38, pp. 1129-1141. 

 

38. Weinan, E., Engquist, B., Huang, Z. Heterogeneous Multiscale Method: A 

General Methodology for Multiscale Modeling. Department of Mathematics, 

Princeton University. New Jersey : Princeton, 2003. pp. 1-3. 

PhysRevB.67.092101. 

 

39. Versteeg, H.K., Malalasekera, W. An introduction to computational fluid 

dynamics: the finite volume method. s.l. : Prentice Hall, 2007. 

 

40. Kevrekidis, I.G., Gear, C.W., Hummer, G. Equation-Free: The Computer-Aided 

Analysis of Complex Multiscale Systems. 7, Princeton : AIChE, July 2004, 

AIChE Journal, Vol. 50, pp. 1346-1355. aic.10106. 

 

41. Sommerfeld, M. The Unsteadiness of Shock Waves Propagating Through Gas-

Particle Mixtures. Aachen, FRG : Springer-Verlag, 1985, Experiments in Fluids, 

Vol. 3, pp. 197-206. 

 

42. Gavrilyuk, S., Saurel, R. Mathematical and numerical modeling of two-phase 

compressible flows with micro-inertia. 1, s.l. : Academic Press, 2002, Journal of 

Computational Physics, Vol. 175, pp. 326-360. 0021-9991. 

 

43. Pelanti, M., LeVeque, R.J. High‐Resolution Finite Volume Methods for Dusty 

Gas Jets and Plumes. 4, s.l. : SIAM, 2006, SIAM Journal on Scientific 

Computing, Vol. 28, pp. 1335-1360. 050635018. 

 

44. Sahimi, M., Mehrabi, A. Percolation and flow in geological formations: upscaling 

from microscopic to megascopic scales. 1, Amsterdam : Elsevier, 1999, Physica. 

A, Statistical mechanics and its applications, Vol. 266, pp. 136-152. 10029424. 

 



www.manaraa.com

103 
 

 

45. Dorobantu, M., Engquist, B. Wavelet-based numerical homogenization. 2, s.l. : 

Society for Industrial and Applied Mathematics, April 1998, SIAM Journal of 

Numerical Analysis, Vol. 35, pp. 540-559. 00361429. 

 

46. Chen, L., Debenedetti, P.G., Gear, C.W., Kevrekidis, I.G. From Molecular 

Dynamics to Coarse Self-Similar Solutions: A Simple Example Using Equation-

Free Computation. 1, New Jersey : Elsevier, July 1, 2004, Journal of Non-

Newtonian Fluid Mechanics, Vol. 120, pp. 215-223. j.jnnfm.2003.12.007. 

 

47. Delgado-Buscalioni, D. and Coveney, P.V. Continuum-particle hybrid coupling 

for mass, momentum, and energy transfers in unsteady fluid flow. 4, s.l. : 

American Physical Society, Apr 2003, Physical Review, Vol. 67, p. 046704. 

PhysRevE.67.046704. 

 

48. Weiqing, R., Weinan, E. Heterogeneous multiscale method for the modeling of 

complex fluids and micro-fluidics. s.l. : Elsevier, 2005, Journal of Computational 

Physics, Vol. 204, pp. 1-26. j.jcp.2004.10.001. 

 

49. Praprotnik, M., Site, L.D., Kremer, K. Adaptive resolution molecular-dynamics 

simulation: changing the degrees of freedom on the fly. Ackermannweg : 

American Institute of Physics, Dec 14, 2006, The Journal of Chemical Physics, 

Vol. 123, p. 224106. 1.2132286. 

 

50. Hou, T.Y. Multiscale modelling and computation of fluid flow. 8, s.l. : John 

Wiley & Sons, 2005, International Journal for Numerical Methods in Fluids, Vol. 

47, pp. 707-719. fld.866 . 

 

51. Durlofsky, L.J., Efendiev, Y., Ginting, V. An adaptive local-global multiscale 

finite volume element method for two-phase flow simulations. 3, s.l. : Elsevier, 

March 2007, Advances in Water Resources, Vol. 30, pp. 576-588. 

j.advwatres.2006.04.002. 

 

52. Ebrahimi, F., Sahimi, M. Grid coarsening, simulation of transport processes in, 

and scale-up of heterogeneous media: Application of multiresolution wavelet 

transformations . 8, s.l. : Elsevier Ltd, August 2006, Advances in Disordered 

Materials, Vol. 38, pp. 772-785. j.mechmat.2005.06.013. 

 

53. Sahimi, M. Fractal-wavelet neural-network approach to characterization and 

upscaling of fractured reservoirs. 8, s.l. : Elsevier, Oct 2000, Computers & 

Geosciences, Vol. 26, pp. 877-905. S0098-3004(00)00028-5. 

 

54. Rastigejev, Y.A., Paolucci, S. Wavelet-based adaptive multiresolution 

computation of viscous reactive flows. 7, Notre Dame : Wiley, Mar 6, 2006, 

International Journal for Numerical Methods in Fluids, Vol. 52, pp. 749-784. 

fld.1202. 

 



www.manaraa.com

104 
 

 

55. Erban, R., Kevrekidis, I.G., Othmer, H.G. An equation-free computational 

approach for extracting population-level behavior from individual-based models 

of biological dispersal. 1, Mar 1, 2006, Physica D: Nonlinear Phenomena, Vol. 

215, pp. 1-24. j.physd.2006.01.008. 

 

56. Hyman, J.M. Patch Dynamics for Multiscale Problems. Multiphysics, Los Alamos 

National Laboratory. Los Alamos : IEEE CS and the AIP, 2005. p. 7. 

 

57. Li, S.G., Liu, Q., Afshari, S. An object-oriented hierarchical patch dynamics 

paradigm (HPDP) for modeling complex groundwater systems across multiple-

scales. 5, May 2006, Environmental Modelling & Software, Vol. 21, pp. 744-749. 

j.envsoft.2005.11.001. 

 

58. Samaey, G., Kevrekidis, I.G., Roose, D. Patch dynamics with buffers for 

homogenization problems. 1, s.l. : Elsevier, Mar 20, 2006, Journal of 

Computational Physics, Vol. 3, pp. 264-287. j.jcp.2005.08.010. 

 

59. Engquist, W., Sun, Y., Bjorn, J. Heterogeneous Multiscale Methods for Interface 

Tracking of Combustion Fronts. 2, s.l. : Society for Industrial and Applied 

Mathematics, 2006, Multiscale Modeling & Simulation, Vol. 5, pp. 532-563. 

050624844. 

 

60. Weinan, E., Huang, Z. A Dynamic Atomistic-Continuum Method for the 

Simulation of Crystalline Materials. 2002, Journal of Computational Physics, Vol. 

182, pp. 234-261. jcph.2002.7164. 

 

61. Nilsson, N.J. Artificial intelligence: a new synthesis. s.l. : Morgan Kaufmann, 

1998. 

 

62. Hocevar, M., Sirok, B., Grabec, I. A Turbulent-Wake estimation using radial 

basis function neural networks. s.l. : Springer, 2005, Flow, Turbulence and 

Combustion, Vol. 74, pp. 291-308. 

 

63. Giralt, F., Arenas, A., Ferre-Gine, J., Rallo, R. The simulation and interpretation 

of free turbulence with a cognitive neural system. 7, s.l. : American Institute of 

Phisics, July 2000, Physics of fluids, Vol. 12, p. 1826. 

 

64. Krose, B., Schmat, P. An introduction to Neural Networks. 8th. Amsterdam : The 

University of Amsterdam, 1996. p. 135. 

 

65. Song, Y.K., Borton, D.A., Park, S., Patterson, W.R., Bull, C.W. Microelectronics 

Neurosensor Arrays. [ed.] IEEE. Providence, RI : IEEE, 2008. Electron Devices 

Meeting. p. 1. 4244. 

 

66. Mehratra, K., Mohan, C.K., Ranka, S. Elements of Artificial Neural Networks. 

Cambridge : Massachusetts Institute of Technology, 1996. 



www.manaraa.com

105 
 

 

 

67. Bear, J. Dynamics of Fluids in Porous Media. New York : Dover, 1972. 0-486-

65675-6. 

 

68. Fausett, L.V. Fundamentals of Neural Networks. [ed.] D. Fowley. Upper Saddle 

River : Prentice-Hall, 1994. 0-13-334186-0. 

 

69. Zhang, J., Walter, G.G., Miao, Y., Lee, W.N. Wavelet neural networks for 

function learning. 6, s.l. : Institute of Electrical and Electronics, 1995, IEEE 

Transactions on Signal Processing, Vol. 43, p. 1485. 1053-587X. 

 

70. Ahmadi, M., Saemi, M. and Asghari, K. Estimation of the Reservoir Permeability 

by Petrophysical Information Using Intelligent Systems. 14, s.l. : Taylor and 

Francis, Jan 1, 2008, Petroleum Science and Technology, Vol. 26, pp. 1656-1667. 

10916460701675173 . 

 

71. VanOoyen, A., Nienhuis, B. Improving the convergence of the back-propagation 

algorithm. 1, 1992, Neural Networks, Vol. 5, pp. 465-471. 0893-6080(92)90008-

7. 

 

72. Bakshi, B.R., Stephanopoulos, G. Wave-net: a multiresolution, hierarchical neural 

network with localized learning. 1, s.l. : American Institute of Chemical 

Engineers, 1993, AIChE Journal, Vol. 39, pp. 57-81. aic.690390108. 

 

73. Tanno, H., Itoh, K., Saito, T., Abe, A., Takayama, K. Interaction of a Shock Wave 

with a Sphere Suspended in a Verticle Tube. 3, Berlin : Springer, Sept 3, 2003, 

Shock Waves, Vol. 13, pp. 191-200. s00193-003-0209-y. 

 

74. Mazumder, M.K., Kirsch, K.J. Flow tracing fidelity of scattering aerosol in laser 

Doppler velocimetry. 4, 1975 : Optics Info Base, 1975, Applied optics, Vol. 14, 

pp. 894-901. AO.14.000894. 

 

75. Rogak, S.N., Flagan, R.C. Stokes drag on self-similar clusters of spheres. 1, s.l. : 

Elsevier, Jan 1990, Journal of Colloid and Interface Science, Vol. 134, pp. 206-

218. 0021-9797(90)90268-S. 

 

76. Robey, H.F., Zhou, Y., Buckingham, A.C., Keiter, P. The time scale for the 

transition to turbulence in a High Reynolds number accelerated flow. s.l. : 

American Institute of Physics, 2003, Physics of Plasmas, Vol. 10, pp. 614-623. 

 

77. Clift, R., Grace, J.R. and Weber, M.E. Bubbles, drops, and particles. s.l. : 

Academic Press, 1978. 

 

78. Saito, T., Marumoto, M., Takayama, K. Numerical Investigations of Shock 

Waves in Gas-Particle Mixtures. Sendai : Springer-Verlag, August 2003, Shock 

Waves, Vol. 13, pp. 299-322. s00193-003-0217-y. 



www.manaraa.com

106 
 

 

 

79. Fedorov, A.V., Kharlamova, Y.V., Khmel, T.A. Reflection of a Shock Wave in a 

Dusty Cloud. 1, Novosibirsk : Springer Science, Jan 2007, Combustion, 

Explosion, and Shock Waves, Vol. 43, pp. 104-113. 

 

80. Khmel, A.V., Fedorov, T.A. Interaction of a Shock Wave with a Cloud of 

Aluminum Particles in a Channel. 2, Novosibirsk : Plenum Publishing, March 

2002, Combustion, Explosion, and Shock Waves, Vol. 38, pp. 206-214. 

 

81. Saito, T. Numerical Analysis of Dusty-Gas Flows. Sendai : Elsevier Science, 

Sept. 2002, Journal of Computional Physics, Vol. 176, pp. 129-144. 

jcph.2001.6971. 

 

82. Kosinski, P. Numerical Analysis of Shock Wave Interaction with a Cloud of 

Particles in a Channel with Bends. Bergen : Elsevier, Jan. 23, 2007, Heat and 

Fluid Flow, Vol. 28, pp. 1136-1143. j.ijheatfluidflow.2006.11.003. 

 

83. Kosinski, P. On Shock Wave Propagation in a Branched Channel with Particles. 

[ed.] O. Igra. 1, Bergen : Springer-Verlag, Feb 14, 2006, Shock Waves, Vol. 15, 

pp. 13-20. s00193-005-0001-2. 

 

84. Ben-Dor, G., Igra, O., Wang, L.Shock Wave Reflections in Dust-Gas 

Suspensions. [ed.] J. Eaton. New York : ASME, March 2001, Journal of Fluids 

Engineering, Vol. 123, pp. 145-153. 10.1115/1.1331558. 

 

85. Ben-Dor, G., Mond, M., Igra, O., Martsiano, Y. A Nondimensional Analysis of 

Dusty Shock Waves in Steady Flows. 1, Negev Beer Sheva : KSME, Feb. 10, 

1988, KSME Journal, Vol. 2, pp. 28-34. 

 

86. Wang, B.Y., Wu, Q.S., Wang, C., Igra, O., Falcovitz, J. Shock Wave Diffraction 

by a Square Cavity Filled with Dusty Gas. [ed.] O. Igra. s.l. : Springer-Verlag, 

Oct 25, 2001, Shock Waves, Vol. 11, pp. 7-14. 

 

87. Igra, O., Takayama, K. Shock Tube Study for the Drag Coefficient of a Sphere in 

a Non-Stationary Flow. A, London : The Royal Society, August 9, 1993, Proc. R. 

Soc. Lond., Vol. 442, pp. 231-247. 

 

88. Drikakis, O., Ofengeim, D., Timofeev, E., Voionovich, P. Computation of Non-

Stationary Shock-Wave / Cylinder Interaction Using Adaptive-Grid Methods. 6, 

Manchester : Academic Press Limited, August 1997, Journal of Fluids and 

Structures, Vol. 11, pp. 665-692. jfls.1997.0101. 

 

89. Sun, M., Saito, T., Takayama, K., Tanno, H. Unsteady Drag on a Sphere by 

Shock Wave Loading. 1, Berlin : Springer, Aug 20, 2005, Shock Waves, Vol. 14, 

pp. 3-9. s00193-004-0235-4. 

 



www.manaraa.com

107 
 

 

90. Sambasivan, S., Udaykumar, H.S. An Evaluation of Ghost-Fluid Methods for 

Strong Shock Interations with Immersed Solid Interfaces. Department of 

Mechanical Engineering, College of Engineering. Iowa City : University of Iowa, 

2009. 

 

91. Osher, S., Sethian, J.A. Fronts Propagating with Curvature Dependent Speed 

Algorithms Based on Hamilton-Jacobi Formulations. Berkley : Elsevier, 1988, 

Journal of Computational Physics, Vol. 79, pp. 12-49. 

 

92. Sethian, J.A. Level-Set Methods and Fast Marching Methods: Evolving Interfaces 

in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials 

Science. 2nd. Cambrige : Cambrige University Press, 1999. 

 

93. Harti, A. Discrete multi-resolution analysis and generalized wavelets. 1, s.l. : 

Elsevier, May 1993, Applied Numerical Mathematics, Vol. 12, pp. 153-192. 

0168-9274(93)90117-A. 

 

94. Price, S.J. A Review of Theoretical Models for Fluidelastic Instability of Cylinder 

Arrays in Cross-Flow. 5, Montreal : Academic Press, July 1995, Journal of Fluids 

and Structures, Vol. 3, pp. 463-518 . jfls.1995.1028. 

 

95. Grieb, N.P. Multiresolution Analysis For Adaptive Refinement Of Multiphase 

Flow Computations. Mechanical Engineering, College of Engineering. Iowa 

City : University of Iowa, 20010. Masters Thesis. 

 

96. Boubez, T.I., Peskin, R.L. Multiresolution neural networks. s.l. : International 

society for optical engineering, 1994. pp. 649-660. QA403.3.w354. 

 

97. Kosinska, A. Interaction of debris with a solid obstacle: Numerical analysis. 1, 

May 15, 2010, Journal of Hazardous Materials, Vol. 117, pp. 602-612. 

j.jhazmat.2009.12.075. 

 

98. Kleinberg, J., Tardos, E. Algorithm Design. Boston : Addison Wesley, 2005. 

0321295358. 

 

99. Ghaboussi, J., Pecknold, D.A., Zhang, M.F., Haj-Ali, R.M. Autoprogressive 

training of neural network constitutive models. 1, s.l. : John Wiley & Sons, Ltd., 

1998, International Journal for Numerical Methods in Engineering, Vol. 42, pp. 

105-126. 10.100. 

 



www.manaraa.com

108 
 

 

APPENDIX 

Averaged and Smoothed Case data 

 

Table A1: Data "lifted" from multiple particle cases 

Mach 

𝜌𝑝
𝜌𝑓

 
𝜑𝑝  𝐶𝑑𝑚𝑎𝑥

 τr It 
 

Mach 

𝜌𝑝
𝜌𝑓

 
𝜑𝑝  𝐶𝑑𝑚𝑎𝑥

 τr It 

1.2 100 2.0 0.97 33.60 32.59  2.8 100 2.0 20.56 4.86 99.92 

1.2 100 8.0 0.82 30.10 24.68  2.8 100 8.0 23.55 2.53 59.58 

1.2 100 12.6 0.78 27.60 21.53  2.8 100 12.6 21.45 2.22 47.62 

1.2 310 22.4 0.70 25.34 17.74  2.8 100 22.4 14.30 2.08 29.74 

1.2 1000 2.0 0.88 30.10 26.49  2.8 310 8.0 19.44 5.51 107.11 

1.2 1000 8.0 0.82 27.70 22.71  2.8 1000 2.0 21.10 12.87 271.56 

1.2 1000 12.6 0.74 25.40 18.80  2.8 1000 8.0 23.60 9.53 224.91 

1.6 31 2.0 3.38 16.90 57.12  2.8 1000 12.6 21.50 7.12 153.08 

1.6 310 8.0 3.61 14.21 51.30  2.8 1000 22.4 14.14 5.21 73.67 

2.0 100 2.0 7.51 10.52 79.01  2.8 3100 8.0 19.47 7.35 143.10 

2.0 100 8.0 7.20 11.30 81.36  3.2 310 8.0 33.95 4.22 143.27 

2.0 100 12.6 6.75 10.90 73.58  3.2 310 22.4 23.76 2.76 65.58 

2.0 100 22.4 5.60 9.90 55.44  3.6 100 2.0 39.54 3.25 128.51 

2.0 310 12.6 7.79 11.96 93.17  3.6 100 8.0 46.27 1.62 74.96 

2.0 1000 2.0 7.55 12.63 95.36  3.6 100 12.6 41.42 1.46 60.47 

2.0 1000 8.0 6.19 10.42 64.50  3.6 1000 2.0 42.07 8.24 346.66 

2.0 1000 12.6 6.84 9.31 63.68  3.6 1000 8.0 46.24 6.41 296.40 

2.0 1000 22.4 6.30 8.26 52.04  3.6 1000 12.6 41.32 4.96 204.95 

2.4 100 8.0 15.05 3.48 52.37  4.0 100 22.4 41.84 1.26 52.72 

2.4 100 22.4 10.90 2.57 28.01  4.0 310 2.0 54.20 4.75 257.45 

2.4 310 2.0 13.40 6.12 82.01  4.0 1000 8.0 60.66 5.83 353.65 

2.8 31 8.0 19.50 1.55 30.23  4.4 1000 8.0 70.30 4.68 329.00 
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MatLab Pseudo Code: Artificial neural network training 

 

%% Defined Constants 

number_of_iterations = 500  ; %keep less than 5000 

number_of_neurons    = 5    ; %keep less than 50, or NaN error 

output_learning_rate = .02  ; %should be less than .03 or really 'jumpy' 

input_learning_rate  = .5   ; %should be less than .5 

acceptable_error     = .0001; %convergance error 

  

%% Data Input and Standardization 

bias = ones(size(aquila_training,1),1); 

training_input = [AQUILA_AIRFOIL(1) bias]; 

average_input = mean(training_input); 

stdev_input = std(training_input); 

training_input = (training_input(:,:)-average_input(:,1))/stdev_input(:,1); 

 

%% Data Target and Standardization 

training_target = AQUILA_AIRFOIL(2); 

average_output = mean(training_target); 

stdev_output = std(training_target); 

training_target = (training_target(:,:)-average_output(:,1))/stdev_output(:,1); 

training_target = training_target'; 

  

%% Allocating Weights and Error Array 

inputs = size(training_input,2); % num of weights is twice num of neurons 

input_weight = randn(inputs,number_of_neurons)/10; % small weights 

output_weight = randn(1,number_of_neurons)/10; 

error_plot = zeros(1, number_of_iterations);  

  

%% MAIN LOOP: ANN Algorithim 

for i = 1:number_of_iterations 

  

    % secondary loop to evaluate each input/output set 

    for j = 1:size(training_input,1)  

         

        n = ceil(rand*size(training_input,1)); 

     

        % sigmoid activation function with derivitive = (1-tanh^2) 

        activation_function = (tanh(training_input(n,:)*input_weight))';  

     

        % Backpropagation: 

        prediction = activation_function'*output_weight'; 

        error = prediction-training_target(n,1); 

        delta_output = error.*output_learning_rate.*activation_function; 

        output_weight = output_weight-delta_output'; 

        delta_input= input_learning_rate.*error.*output_weight'.*(1-

(activation_function.^2))*training_input(n,:); % d/dx tanh 

        input_weight = input_weight - delta_input'; 

    end 

  

    % Visual Output 

    prediction = output_weight*tanh(training_input*input_weight)';  

    final_error = prediction'-training_target; 

    error_plot(i) = (sum(final_error.^2))^0.5; 

    figure(1); plot(error_plot) 

     

    % Converged Solution     

    if error_plot(i) < acceptable_error 

        fprintf('converged after %d iterations.\n',i); 

        IN_WT = input_weight; 

        OUT_WT = output_weight; 

        break 

    end 

end 
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MatLab Pseudo Code: Multi-Resolution Augmented ANN 
 

%% Starting on this level, going down 

[Training_Data ,Target_Data, startvalue] = MULTI-RESOLUTION_ANALYSIS(Data); 

starting_level = size(outputs,2);  

Levels_To_Learn = size(outputs,2); 

  

%% MAIN LOOP 

for level = 0:Levels_To_Learn-1  

 

    for i = 1:2^level 

         

        if level == 0 % Initializes Weights 

            number_of_inputs = size(inputs,2)+1; % plus bias 

            input_weight = randn(number_of_inputs,number_of_neurons)/10; % small weights 

            output_weight = randn(1,number_of_neurons)/10; 

 

        else % Extracts and Segments Data from MRA 

            seg = (max(Training_Data (:,1))-min(Training_Data (:,1)))/(2^level); 

            clear inputs outputs 

            cnt = 0; 

            section(1) = (seg*(i-1)+min(Training_Data (:,1))); 

            section(2) = (seg*(i  )+min(Training_Data (:,1))); 

 

            for j = 1:length(Training_Data) 

                if (seg*(i-1)+min(Training_Data (:,1))) < Training_Data (j)      && 

                                  Training_Data (j) < (seg*(i)+min(Training_Data (:,1))) 

                    cnt = cnt+1; 

                    inputs(cnt,1) = Training_Data (j,1); 

                    inputs(cnt,2) = Training_Data (j,2); 

                    outputs(cnt,1) = Target_Data (j,starting_level-level); 

                end 

            end 

            clear input_weight output_weight 

 

            for j = 1:number_of_neurons 

                input_weight(:,j)  = new_inwt(:,number_of_neurons*(i-1)+j); 

                output_weight(1,j) = new_outwt(1,number_of_neurons*(i-1)+j); 

            end 

        end 

         

        [final, IN_WT, OUT_WT] = ARTIFICIAL_NEURAL_NETWORK(inputs, outputs,   & 

                                 input_weight, output_weight, iterations); 

         

        if level == 0 % Allocates Arrays 

            ALL_inwts  = zeros(2,number_of_neurons); 

            ALL_outwts = zeros(1,number_of_neurons); 

            new_inwt  = zeros(2,number_of_neurons); 

            new_outwt = zeros(1,number_of_neurons); 

        end 

 

        for j = 1:number_of_neurons % Appends Weights 

            ALL_inwts(:,number_of_neurons*(i-1)+j)  = IN_WT(:,j); 

            ALL_outwts(1,number_of_neurons*(i-1)+j) = OUT_WT(1,j); 

        End 

 

        for i = 1:size(ALL_inwts,2) % Expands Weights 

            for j=1:number_of_inputs 

                new_inwt(j, 2*i-1) = ALL_inwts(j, i); 

                new_inwt(j, 2*i) = randn()/10; 

            end 

            new_outwt(1,2*i-1) = ALL_outwts(1, i); 

            new_outwt(1,2*i) = randn()/10; 

        end 

    end 

end 
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 MatLab Pseudo Code: ANN based shock impacted particle advection 
 

%% Defined Constants 

NP    = 1000; % Number of Particles 

xsize = 1024; 

ysize = 512 ; 

denr  = 1000;  

time  = 0.0 ; 

step  = 0.1 ; % Step Size 

endt  = 1001; % End Time 

Mach  = 2.0 ; 

 

%% Allocating Arrays 

cen = zeros(2,NP); % X and Y Particle Center 

vel = zeros(2,NP); % X and Y Particle Velocity 

acc = zeros(2,NP); % X and Y Particle Acceleration 

phi = zeros(NP  ); % Volume Fraction 

max = zeros(NP  ); % ANN Max Force Prediction 

tau = zeros(NP  ); % ANN Relaxation Time Prediction 

lvlset = zeros(xsize, ysize); % Level Set Field 

volfrc = zeros(xsize, ysize); % Volume Fraction Field 

 

%% Seeding and Initializing Level Set Field 

for i = 1:NP 

    cen(1, i) = int( randn()*(ysize)+ysize/2) ); % x 

    cen(2, i) = int( randn()*(ysize)+ysize/2) ); % y 

    for x = -1:1 

        for y = -1:1 

            lvlset( cen(1,i)+x , cen(2,i)+y ) = 1; 

        end 

    end 

end 

 

%% Calculates Local Volume Fraction Field 

for i = 1:xsize 

    for j = 1:ysize 

        volfrc(i,j) = sum(lvlset( i-30:i+30 , j-30:j+30 ))/(60^2); 

    end 

end 

  

%% Sets Volume Fraction to Particle 

for i = 1:NP 

    phi(i) = volfrac( cen(1,i) , cen(2,i) ); 

end 

 

tau(i) = ARTIFICIAL_NEURAL_NETWORK_TAU(Mach, denr, phi(i), time); % Already Trained ANN 

max(i) = ARTIFICIAL_NEURAL_NETWORK_MAX(Mach, denr, phi(i), time); 

 

%% Main Loop: ADVECTION SCHEME 

while time < endtime 

     

    for i = 1 : NP 

        %   frc(1, i) = MRA_ANN(Mach, phi(i), time) % without lifting 

        frc(1, i) = max(i)*exp(-time/tau(i));  

        frc(2, i) = max(i)*exp(-time/tau(i))*rand(.1); 

        acc(1,i) = frc(1,i) / mass; % mass = denr * den_f * vol 

        acc(2,i) = frc(2,i) / mass; 

        vel(1,i) = vel(1,i) + acc(1,i) * step; 

        vel(2,i) = vel(2,i) + acc(2,i) * step; 

        cen(1,i) = cen(1,i) + vel(1,i) * step; 

        cen(2,i) = cen(2,i) + vel(2,i) * step; 

    end 

 

    time = time + step; 

 

    if (mod(time, 10) == 0) 

        LEVELSET_IMAGE_PROCESS(cen, lvlset); 

    end 

end 


	Artificial neural network for behavior learning from meso-scale simulations, application to multi-scale multimaterial flows
	Recommended Citation

	acknowledgements
	Abstract
	table of contents
	list of tables
	List of figures
	CHAPTER I:    INTRODUCTION
	Background

	CHAPTER II:    multiscale modeling approaches
	Importance of and challenges to multiscale modeling
	Approaches to multiscale modeling
	Homogenization/ Up-scaling
	Embedding fine-scale features into global discretization
	Wavelet-based multi-resolution analysis
	Equation-free modeling
	Heterogeneous multiscale modeling

	Application of Artificial Neural Networks to multiscale modeling
	Macro-scale modeling and interscale coupling

	CHAPTER III:    mETHODOLOGY
	Artificial Neural Networks
	Topography
	Learning and Prediction
	Examples of ANN learning process
	Logic gates
	The single-variable sine function
	Multi-variable case (“Peaks”)
	Learning a drag law
	Empirical drag laws


	“Lifting” information from meso-scale calculations
	Macro-scale calculations

	CHAPTER IV:    nUMERICS AND cALCULATIONS
	Formulation
	Physics
	Scaling and Variation
	Assumptions
	Governing Equations
	Immersed Boundary Method
	Boundary Conditions
	Verification

	CHAPTER V:    RESULTS
	Single Particle Cases
	Post-Shocked Flow
	Stationary Particle
	Moving Particle

	Multiple Particle Cases
	Multiple Moving Particles
	Multiple Particle Clouds

	Chapter vi:  Application of Ann-based learning to Multi-Scale computations
	Information passage
	Single particle motion
	General Particle Motion
	Lagrangian Advection
	Macro-Scale Phenomena
	Macro-scale simulation
	Assumptions
	General Motion

	CHAPTER VIi:    cONCLUSIONS AND RECCOMENDATIONS
	Conclusions
	Computational Savings
	Multi-Resolution Augmented ANN

	Recommendations and Future Work
	Autoprogressive training


	References
	appendix
	Averaged and Smoothed Case data
	MatLab Pseudo Code: Artificial neural network training
	MatLab Pseudo Code: Multi-Resolution Augmented ANN
	MatLab Pseudo Code: ANN based shock impacted particle advection


